

Metabolic stress, mitochondria and organ failure during critical illness: underlying mechanisms revealing therapeutic potential

Jan Gunst, MD, PhD

33rd Annual SIZ meeting Vilvoorde, June 14, 2013

Metabolic interventions can affect outcome

Tight glycemic control with intensive insulin therapy

VOL. 354 NO. 5

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

Intensive Insulin Therapy in the Medical ICU

FEBRUARY 2, 2006

Greet Van den Berghe, M.D., Ph.D., Alexander Wilmer, M.D., Ph.D., Greet Hermans, M.D., Wouter Meersseman, M.D., Pieter J. Wouters, M.Sc., Ilse Milants, R.N., Eric Van Wijngaerden, M.D., Ph.D., Herman Bobbaers, M.D., Ph.D., and Roger Bouillon, M.D., Ph.D., Ph.D.

Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study

Dirk Vlasselaers^{*}, Ilse Milants^{*}, Lars Desmet^{*}, Pieter J Wouters, Ilse Vanhorebeek, Ingeborg van den Heuvel, Dieter Mesotten, Michael P Casaer, Geert Meyfroidt, Catherine Ingels, Jan Muller, Sophie Van Cromphaut, Miet Schetz, Greet Van den Berghe

Early parenteral nutrition

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Early versus Late Parenteral Nutrition in Critically Ill Adults

Michael P. Casaer, M.D., Dieter Mesotten, M.D., Ph.D., Greet Hermans, M.D., Ph.D., Pieter J. Wouters, R.N., M.Sc., Miet Schtz, M.D., Ph.D., Geret Meyfroidt, M.D., Ph.D., Sophie Van Cromphaut, M.O., Ph.D., Catherine Ingels, M.D., Philope Mersseman, M.D., Jan Muller, M.D., Ditk Vasselaers, M.D., Ph.D., Yves Debaveye, M.D., Ph.D., Lars Desmet, M.D., Japperina Dubois, M.D., Aime Van Assche, M.D., Simov Vanderhöyden, B.Sc., Alexander Wilmer, M.D., Ph.D., and Greet Van den Berghe, M.D., Ph.D.*

Van den Berghe et al. NEJM 2001 Van den Berghe et al. NEJM 2006 Vlasselaers et al. Lancet 2009 Casaer et al. NEJM 2011

- Mechanisms of organ protection by preventing hyperglycemia with insulin
- Detailed impact of early vs late PN on the kidney

Part 1: Glycemic control vs insulin & renal damage

Data published: Kidney Int 2009;76(5):512-20

4-arm study: blood glucose and insulinemia regulated independently

Normoinsulinemia/Normoglycemia Hyperinsulinemia/Normoglycemia Normoinsulinemia/Hyperglycemia Hyperinsulinemia/Hyperglycemia

- NI/NG
- HI/NG
- NI/HG
- × HI/HG

Ellger et al., Diabetes 2006

Glucose vs insulin & kidney function

Plasma creatinine

Bars indicate mean + s.e.m. §, $#: p \le 0.1$, $p \le 0.05$ versus control

- : $p \le 0.1$, $p \le 0.05$ between sick groups

Glucose vs insulin & kidney function

Plasma creatinine

Glucose (µmol/g cortex)

Bars indicate mean + s.e.m.

§, $#: p \le 0.1$, $p \le 0.05$ versus control

- : $p \le 0.1$, $p \le 0.05$ between sick groups

Mechanisms of organ protection

NI/NG

Tissue perfusion & DO₂

Mitochondrial function

Cortical O₂ delivery

Control

: p≤0.05 versus control

HI/NG

0 0

0

0

ဖာဝ ဝ

0

20 25

Complex I (U/g cortex)

Complex V

NI/HG

r=-0.640

P<0.0001

30 35 HI/HG

: $p \le 0.1$, $p \le 0.05$ between sick groups

0.0

0

4.0

Bars indicate mean + s.e.m.

Conclusion Part 1 Glycemic control versus Insulin & renal damage

Mechanisms of glucose toxicity

Mitochondrial dysfunction (Multiple) organ failure

Part 2: Role of intact mitochondrial repair in critical illness

Data published: J Clin Endocrinol Metab 2011;96(4):E633-645 J Clin Endocrinol Metab 2012;97(1):E59-64 Crit Care Med 2013; 41(1):182-94

Mitochondrial repair: autophagy

Human liver

Number autophagic vacuoles

Boxes indicate median/IQR, whiskers interdecile range ★ : p≤0.05 versus control Control (elective rectal surgery)
Conventional insulin therapy

12

18

0.20

n

 \ast

18

60

Boxes indicate median/IQR, whiskers interdecile range * : p≤0.05 versus control ControlConventional insulin therapy

Mitochondrial repair in vivo?

Human post mortem biopsies: relation with outcome?

Rabbit model of prolonged critical illness: survivors vs. non-survivors

Autophagy ~ Outcome

Liver

Kidney

*

 \ast

LC3-II/LC3-I ratio

Mitochondrial protection by preventing hyperglycemia (in part) explained by maintaining autophagy more efficient?

Boxes indicate median/IQR, whiskers interdecile range. Pearson correlation calculated after square root transformation of p62 and markers of organ damage *, (*): p≤0.05, 0.05<p≤0.1 vs control ______ ====: p≤0.05, 0.05<p≤0.1 between sick groups

LIVER

Boxes indicate median/IQR, whiskers interdecile range. Pearson correlation calculated after square root transformation of p62 and markers of organ damage *, (*): p≤0.05, 0.05<p≤0.1 vs control ______ ====: p≤0.05, 0.05<p≤0.1 between sick groups

Activation of autophagy

p62 kidney

Plasma creatinine

Complex V activity kidney

Boxes indicate median/IQR, whiskers interdecile range $*, (*): p \le 0.05, 0.05 vs healthy$

--- : $p \le 0.05$, 0.05 between sick groups

Conclusion Part 2: Role of intact mitochondrial repair in critical illness

¹Derde et al. Endocrinology 2012

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Early versus Late Parenteral Nutrition in Critically Ill Adults

Va	riable	Late-Initiation Group (N=2328)	Early-Initiation Group (N=2312)	P Value
Kidney failure				
	Modified RIFLE category — no. (%) \P	104 (4.6)	131 (5.8)	0.06
	Renal-replacement therapy — no. (%)	201 (8.6)	205 (8.9)	0.77
	Median duration of renal-replacement therapy (interquartile range) — days	7 (3–16)	10 (5–23)	0.008

Casaer et al. N Engl J Med 2011

Part 3: Detailed impact of early vs late PN on AKI

Data published: J Am Soc Nephrol 2013; 24(6):995-1005

Incidence of AKI

	Early PN	Late PN	n	
	n (%)	n (%)	Ρ	
AKI (any)	568 (24.9)	565 (24.6)	0.8	
AKI Stage 1	219 (9.6)	197 (8.6)	0.2	
AKI Stage 2	99 (4.3)	107 (4.7)	0.6	
AKI Stage 3	250 (11.0)	261 (11.4)	0.7	

AKI stage 1 and 2 were defined as peak creatinine \geq 1.5-2x, respectively 1.5-2x baseline value. AKI stage 3 was defined as preak creatilinine \geq 2x baseline value OR Creatinine >4 mg/dl (and \geq 0.5 mg/dl rise) OR new renal replacement therapy

Recovery from AKI

Early PN	Late PN	р			
AKI stage 1					
1 (1-2)	2 (1-3)	0.4			
AKI stage 2					
5 (3-9)	4 (2-6)	0.04			
AKI stage 3					
12 (7-21)	11 (6-21)	0.2			
	Early PN 1 (1-2) 5 (3-9) 12 (7-21)	Early PN Late PN 1 (1-2) 2 (1-3) 5 (3-9) 4 (2-6) 12 (7-21) 11 (6-21)			

¹ Data show median (interquartile range) for ICU survivors only

Recovery from AKI

	Early PN	Late PN	р			
AKI stage 1						
Days with AKI in ICU ¹	1 (1-2)	2 (1-3)	0.4			
Alive and AKI-free at hospital discharge, n (%)	168 (76.7)	148 (75.1)	0.7			
AKI stage 2						
Days with AKI in ICU ¹	5 (3-9)	4 (2-6)	0.04			
Alive and AKI-free at hospital discharge, n (%)	63 (63.6)	68 (63.6)	0.9			
AKI stage 3						
Days with AKI in ICU ¹	12 (7-21)	11 (6-21)	0.2			
Alive and AKI-free at hospital discharge, n (%)	86 (34.4)	98 (37.5)	0.5			

¹ Data show median (interquartile range) for ICU survivors only

Plasma creatinine

Creatinine clearance¹

Early PN

¹Excluded: dialyzed patients (n=428) and patients with missing samples on more than 2 consecutive days (n=584)

* 0.001<p \leq 0.01; # p \leq 0.001 between sick groups Bar graphs indicate mean and 95% CI

Nitrogen loss and balance over time in ICU

Nitrogen loss (g)

Nitrogen balance (g)

63% of extra nitrogen administration net wasted!

* 0.001<p≤0.01; # p≤0.001 between sick groups Bar graphs indicate mean and 95% CI Early PN

Excluded: dialyzed patients (n=428) and patients with missing samples on more than 2 consecutive days (n=584)

Conclusion Part 3 Early versus late PN & AKI

Early PN:

No major impact on incidence and recovery of AKI prolonged stage 2 AKI?

 Inefficient to reverse the negative nitrogen balance Increased ureagenesis prolonged duration of renal replacement therapy? (as supported by multiple regression-data not shown)

Future perspectives

Open perspectives for therapies that activate autophagy in critical illness, to stimulate damage removal, especially in combination with therapies that are able to effectively suppress excessive catabolism of healthy, lean tissue

Acknowledgements

Department and Laboratory of Intensive Care Medicine

Greet Van den Berghe Ilse Vanhorebeek Miet Schetz Eric-Jan Ververs Annelies Aertgeerts Inge Derese Sarah Derde Andy Wauters **Pieter Wouters** Fabian Güiza Michaël Casaer Greet Hermans Magaly Boussemaere Björn Ellger Yves Debaveye all colleagues from the Laboratory of Intensive Care Medicine, KU Leuven clinical staff and research nurses Intensive Care Medicine, University Hosp. Leuven

External collaborators

Wim Martinet (Univ. Antwerp) Christophe Magnes (Univ. Graz) Evelyne Lerut (KU Leuven)

Jasperina Dubois (Jessa Hosp. Hasselt) Kathleen Claes (KU Leuven)

