32nd annual meeting of the Belgian Society of Intensive Care Medicine June 15, 2012

Nutrients, insulin and muscle wasting during critical illness

Sarah Derde

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown
 - Skeletal muscle = main protein source

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown
 - Skeletal muscle = main protein source

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown
 - Skeletal muscle = main protein source

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown
 - Skeletal muscle = main protein source

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown
 - Skeletal muscle = main protein source

- Critical illness: feeding-resistant hypercatabolism
 - Imbalance between protein synthesis and breakdown
 - Skeletal muscle = main protein source

- rehabilitation: delayed
- mortality risk
- after hospital discharge: quality of life >

Muscle weakness

Myofibrillar protein

Autophagy

Protein degradation pathways: <u>Ubiquitin-proteasome system</u>

Muscle wasting

Protein degradation pathways: <u>Autophagy</u>

Introduction

Role of autophagy in muscle wasting?

- ▶ Excessive activation → could aggravate muscle wasting
- ▶ Impairment/inhibition → could evoke atrophy and myopathy
 - muscle fiber degeneration
 - muscle weakness
- ▶ Effect of autophagy during prolonged critical illness ?

Inhibitors of catabolism

- Insulin
- Nutrients

ineffective to safely counteract hypercatabolism

Insulin resistance

- Dysfunctional gastro-intestinal tract
- Intravenous nutrition:

General hypothesis

Intravenous nutrition, while maintaining normoglycemia, safely counteracts muscle wasting during prolonged critical illness

Objectives

- I. Effect of <u>strict blood glucose control</u> with intensive insulin therapy on muscle wasting <u>in fed critically ill patients</u>
- 2. Efficacy in counteracting protein degradation and safety of intravenous nutritional interventions in an <u>animal model</u>
 - ▶ Effect of <u>fasting</u> versus <u>/ intravenous glucose load</u>

Impact of <u>altering nutritional substrate composition</u>

Hypothesis I

Muscle atrophy in fed critically ill patients can be attenuated by intensive insulin therapy

Derde et al, Crit Care Med 2012, 40:79-89 Vanhorebeek et al, J Clin Endocrinol Metab 2011, 96:E633-E645

Patient population

Study 1: Insulin therapy and muscle wasting

Muscle protein synthesis

Myofiber size and morphology

Muscle protein degradation

Synthesis of myofibrillary proteins

MyHC-IIa

actin

Myosin/actin

- Healthy control
- Conventional insulin therapy
- Intensive insulin therapy

* : P ≤ 0.05 versus control

Study I: Insulin therapy and muscle wasting

Myofiber size: fiber cross-sectional area

Rectus abdominis

cross sectional area (µm²)

Healthy control

Critically ill :conventional insulin therapy

Critically ill: intensive insulin therapy

Morphological analysis of skeletal muscle:

Myofiber degeneration

Myofibers with centralized nuclei

: $p \le 0.05$ versus control// (): $p \le 0.1$ versus control// §: $p \le 0.05$ sick versus control

Control
Conventional insulin therapy
Intensive insulin therapy

Protein degradation: autophagy

Vacuolization \\ \begin{array}{c} \text{ubiquitin} & \text{ubiquitin} & \text{0.50} & \text{0.45} & \text{0.45} & \text{0.35} & \text{0.35} & \text{0.35} & \text{0.35} & \text{0.35} & \text{0.25} & \text{vertex} \end{array} Impaired autophagy \text{p62} \text{p62}

*: $p \le 0.05$ versus control (§): $p \le 0.1$ sick versus control Control
Conventional insulin therapy
Intensive insulin therapy

Critically ill - CIT

Protein degradation: Ubiquitin-proteasome system

20 S proteasome activity

- Healthy control
- Conventional insulin therapy
- Intensive insulin therapy

^{*:} $p \le 0.05$ versus control// (§): $P \le 0.1$ sick versus control

Conclusions

2. Efficacy to attenuate protein degradation and safety of intravenous nutrition in an animal model of prolonged critical illness

Hypothesis 1

Increasing the intravenous glucose load, within the physiological range and while maintaining normoglycemia, safely counteracts muscle catabolism

Derde et al, Crit Care Med 2010, 38:602-611

Experimental setup 1

Safety evaluation: survival & organ function

Muscle protein degradation

Safety:Survival and organ function

 $\S: p < 0.05 \text{ versus all other groups}//*: p < 0.05 \text{ versus high/hg rabbits}// #: p < 0.05 versus healthy control rabbits// -: healthy reference range$

Study 2: increasing the intravenous glucose load

Muscle proteolysis

Urea

^{*:} p < 0.05 versus high/hg rabbits // @: p < 0.05 versus moderate/ng rabbits//:\$: p < 0.05 versus no/ng rabbits// #: p < 0.05 versus healthy control rabbits // +:p <0.05 versus low/ng rabbits //_: healthy reference range//§: p < 0.05 versus all other groups

Muscle proteolysis: Ub-proteasome

^{*:} p < 0.05 versus high/hg rabbits // @: p < 0.05 versus moderate/ng rabbits//:\$: p < 0.05 versus no/ng rabbits// #: p < 0.05 versus healthy control rabbits // : healthy reference range

Conclusion

- Increasing intravenous glucose load within physiological range while normoglycemia is maintained
 - Safe with regard to organ function and survival
 - Reduces biochemical markers of catabolism as compared with fasting
 - Optimum may be reached with moderate glucose intake
- High glucose load / hyperglycemia: protective effect nutrition

Hypothesis 3

Impact of feeding on the catabolic pathways may be nutrient-specific

Derde et al, Endocrinology. 2012 May;153(5):2267-76

Experimental setup 2

Safety evaluation: survival & weight loss

Muscle fiber size: cross-sectional area

- Muscle protein degradation
 - Ubiquitin proteasome pathway
 - autophagy

Safety: Survival and weight loss

- Survival: no mortality difference among groups
- Feeding attenuated weight loss observed in fasted critically ill rabbits

Muscle fiber size: cross-sectional area

cross sectional area (pixels2)

- fasted critically ill
- fed critically ill, extra glucose
- fed critically ill, extra lipids
- fed critically ill ,extra amino acids
- healthy reference range

Muscle proteolysis: Ub-proteasome

- fasted critically ill
- fed critically ill, extra glucose
- fed critically ill, extra lipids
- fed critically ill ,extra amino acids
- healthy reference range

^{*:} $p \le 0.05$ versus healthy control rabbits; † $p \le 0.05$ versus fasted critically ill rabbits; ‡ $p \le 0.05$ versus critically ill rabbits from the glucose group

Muscle proteolyis: autophagy

Rabbits with severe vacuolization

^{*:} $p \le 0.05$ versus healthy control rabbits; $p \le 0.05$ versus fasted critically ill rabbits; $p \le 0.05$ versus critically ill rabbits from the glucose group

Conclusions

- Moderate amount of intravenous nutrition
 - Suppression atrophy at level of gene expression and activity
 - minor effect of nutrient composition: AA most effective?
 - reduced fiber size most preserved with extra AA
 - Suppression of autophagy
 - accumulation toxic protein aggregates /damaged organelles
 in skeletal muscle most pronounced with AA
 - Most anti-catabolic intervention (AA) may have been most toxic

General conclusion and perspectives

- Prevention of hyperglycemia in the fed condition is crucial to prevent mortality
- Intravenous nutrition while maintaining normoglycemia
 \(\) catabolism
 - BUT possible toxic side effects by inhibition autophagy!! clinical setting?
- Pharmacological intervention to stimulate autophagy

Acknowledgements

- Promoter:Prof. dr. G.Van den Berghe
- Co-promoter: Prof. dr. I. Vanhorebeek
- Prof. dr. V. Darras (Laboratory of Comparative Endocrinology, KUL)
- Prof. dr. L. Larsson (University Uppsala, Sweden)
- Prof. dr. W. Martinet (Universiteit Antwerpen)
- LEGENDO
- Excellent technical assistance: E. Ververs, I. Derese
- The colleagues of the Laboratory of Intensive Care Medicine

This work was supported by:

The Fund for Scientific Research (FWO)

The Research Council of the Katholieke Universiteit Leuven

Long-term structural research financing via the Methusalem program