## Energy Expenditure and Nutritional Therapy in Critically ill Patients

Elisabeth De Waele, MD, PhD SIZ Award 2016





REVIEW Open Access

## Metabolic and nutritional support of critically ill patients: consensus and controversies

Jean-Charles Preiser<sup>1\*</sup>, Arthur RH van Zanten<sup>2</sup>, Mette M Berger<sup>3</sup>, Gianni Biolo<sup>4</sup>, Michael P Casaer<sup>5</sup>, Gordon S Doig<sup>6</sup>, Richard D Griffiths<sup>7</sup>, Daren K Heyland<sup>8</sup>, Michael Hiesmayr<sup>9</sup>, Gaetano Iapichino<sup>10</sup>, Alessandro Laviano<sup>11</sup>, Claude Pichard<sup>12</sup>, Pierre Singer<sup>13</sup>, Greet Van den Berghe<sup>5</sup>, Jan Wernerman<sup>14</sup>, Paul Wischmeyer<sup>15</sup> and Jean-Louis Vincent<sup>1</sup>

#### Consequences of inappropriate feeding


#### Underfeeding

Observational studies have shown the association between negative energy balance and poor outcome

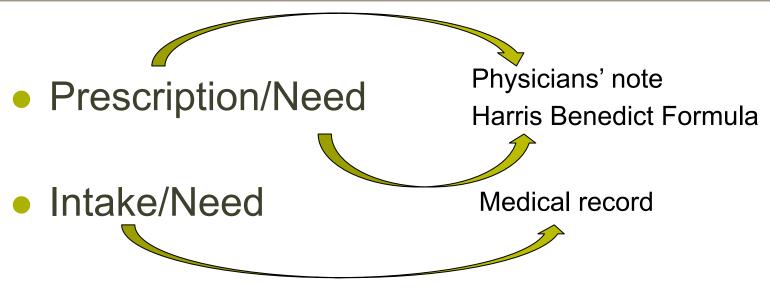
#### Overfeeding

Provision of macronutrients in excess of metabolic demand is deleterious.

- To optimize nutritional therapy
- To improve bedside techniques



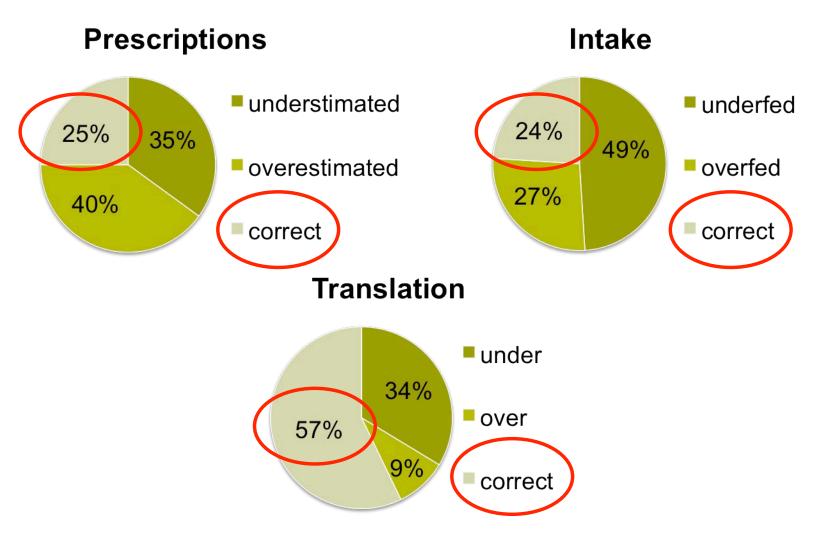



## 1. Quality control study



### Methods

- Prospective non-interventional design
- Adult critically ill patients
- Intubation and mechanical ventilation for 7 days
- n=50


### Protocol



Intake/Prescription

| Observation days       | 350    |
|------------------------|--------|
| Mechanical ventilation | 7 days |
| Number of patients     | 50     |

### Results: Adequacy



# 2. Feasibility of Indirect Calorimetry to determine Energy Expenditure



## Optimal nutrition = use of Indirect Calorimetry

#### Research

**Open Access** 

Optimal nutrition during the period of mechanical ventilation decreases mortality in critically ill, long-term acute female patients: a prospective observational cohort study

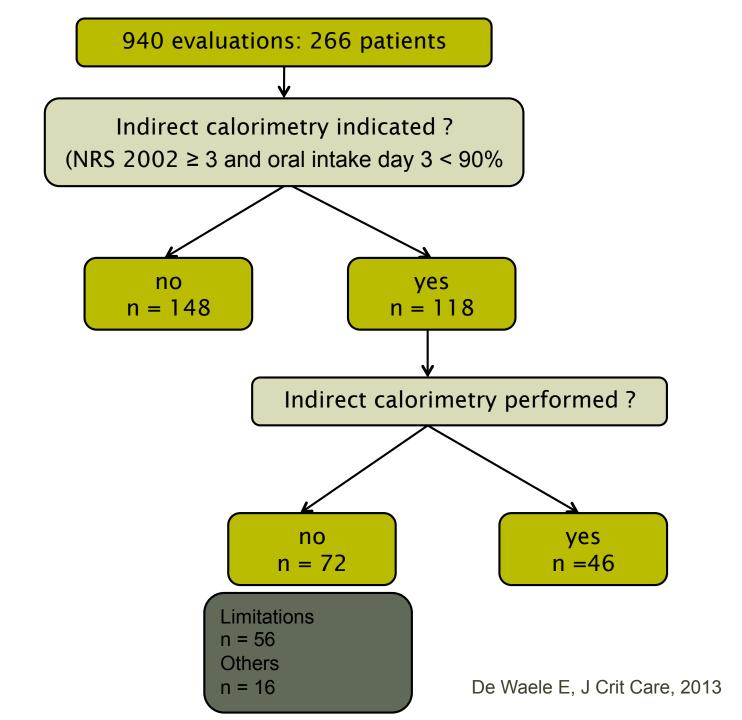
Rob JM Strack van Schijndel<sup>1</sup>, Peter JM Weijs<sup>2</sup>, Rixt H Koopmans<sup>1</sup>, Hans P Sauerwein<sup>3</sup>, Albertus Beishuizen<sup>1</sup> and Armand RJ Girbes<sup>1</sup>

- → Energy determined by indirect calorimetry
- → Protein at least 1.2 g/kg/d

### Indirect Calorimetry

#### Principle:

- Oxygen consumption
- Carbon dioxide production
- → Metabolism


Abbreviated Weir Equation:

REE = [3.9 (VO2) + 1.1 (VCO2)] 1.44

VO2 = oxygen uptake (ml/min) VCO2 = carbon dioxide output (ml/min)

Respiratory quotient (RQ) = VCO2/VO2





# 3. Correlation between IC measured and equation-generated Energy Expenditure



### Energy Expenditure - Calculated

|                                                                  | F                                                                                                                                                                 | Formula                               |                   |           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|-----------|
| Harris Benedict 1919                                             | ♂: 66.4730 + (13.7516 x W) + (5.0033 x H)-(6.7550 x A)<br>♀: 655.0955 + (9.5634 x W) +(1.8496 x H)-(4.6756 x A)                                                   |                                       |                   |           |
| Harris Benedict 1984                                             | ♂: 88.362 + (13.397 x W) + (4.799 x H)-(5.677 x A)<br>♀: 447.593 + (9.247 x W) +(3.098 x H)-(4.33 x A)                                                            |                                       |                   |           |
| Faisy-Fagon                                                      | (8 x W) + (14 x H) + (32 x Vm) + (94 x T)-4834                                                                                                                    |                                       |                   |           |
| Ireton-Jones 1992                                                | 1925-(10 x A) + (5 x W) + (281 if ♂) + (292 if trauma present) + (851 if burns present)                                                                           |                                       |                   |           |
| Ireton-Jones 1997                                                | 1784-(11 x A) + (5 x W) + (244 if ♂) + (239 if trauma present) + (840 if burns present)                                                                           |                                       |                   |           |
| Penn State 1998                                                  | $(1.1 \text{ x value of HBE}) + (140 \text{ x Tmax}) + (32 \text{ x V}_E)-5340$                                                                                   |                                       |                   |           |
| Penn State 2003                                                  | (0.85 x value of HBE) + (175 x Tmax) + (33 x V <sub>E</sub> )-6433                                                                                                |                                       |                   |           |
| Penn State 2003b                                                 | Mifflin (0.96) + Tmax (167) + Ve (31)-6212 Mifflin: Men: 10(W) + 6.25(H)-5(A) +5                                                                                  |                                       |                   |           |
| Penn State 2010                                                  | Mifflin (0.71) + VE (64) + Tmax (85)-3085 Women: 10(W) + 6.25(H)-5(A)-16                                                                                          |                                       |                   |           |
| Swinamer                                                         | $(945 \times BSA) - (6.4 \times A) + (108 \times T) + (24.2 \times RR) + (817 \times V_T) - 4349$                                                                 |                                       |                   |           |
| American College of Chest<br>Physicians (ACCP)<br>recommendation | 25 x W - if BMI 16-25 kg/m <sup>2</sup> use usual body W - if BMI > 25 kg/m <sup>2</sup> use ideal body W - if BMI < 16 kg/m <sup>2</sup> use existing body W for | the first 7-10days. tl                | nen use IBW       |           |
| ESICM '98 statement                                              | Caloric target = caloric need × corrected IBW Formula for calculating IBW ♂: 50 + [0.91x (H-152.4)] ♀: 45.5 + [0.91x (H-152.4)]                                   | Corrected IBW                         |                   |           |
|                                                                  |                                                                                                                                                                   | If BMI < 18.5                         | (IBW + actual b   | ody W) /2 |
|                                                                  |                                                                                                                                                                   | If BMI 18.5 – 27                      | IBW               |           |
|                                                                  |                                                                                                                                                                   | If BMI > 27                           | IBW x 1.2         |           |
|                                                                  |                                                                                                                                                                   | II DIVII > 2/                         | 1D W A 1.2        |           |
|                                                                  |                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | need (kcal/kg/day | 7)        |
|                                                                  |                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · |                   | r)<br>3   |
|                                                                  |                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | need (kcal/kg/day | 15.       |

 $<sup>\</sup>circlearrowleft$ : male;  $\circlearrowleft$ : female; W: weight (kg); H: height (cm); A: age (years); Vm: minute ventilation (L/min); T: body temperature (°C); BSA: body surface area (m²); HBE: Harris Benedict equation;  $T_{max}$ : maximum body temperature in the past 24 h (°C); RR: respiratory rate (breaths/min); IBW: ideal body weight (kg); BMI: body mass index (kg/m²);  $V_E$ : minute volume (L/min);  $V_T$ : tidal volume (L).

Equations for calculating resting energy expenditure (kcal/day)

## Degree of correlation between measured and calculated REE

| Equation             | R <sup>2</sup> | Intercept | slope  |
|----------------------|----------------|-----------|--------|
| Harris Benedict 1919 | 0.43           | 670,72    | 0,5403 |
| Harris Benedict 1984 | 0.44           | 681,25    | 0,5420 |
| Ireton-Jones 1992    | 0.30           | 1271,66   | 0,3791 |
| Ireton-Jones 1997    | 0.28           | 1073,25   | 0,3587 |
| Penn-State 1998      | 0.49           | 786,78    | 0,7628 |
| Penn-State 2003      | 0.47           | 839,44    | 0,6377 |
| Faisy-Fagon          | 0.49           | 1150,81   | 0,5358 |
| Swinamer             | 0.51           | 1024,30   | 0,5856 |
| ACCP recommendations | 0.24           | 1171,05   | 0,2894 |
| ESICM '98 statement  | 0.41           | 658,32    | 0,9168 |

 $R^2$  = correlation coefficient

### Correlation study

- Poor correlation between IC measurements and equation-derived energy calculations
- In the post-acute phase of critical illness we obtained a mean REE of 21 kcal/kg/day
- Clinical: Nutritional targets may be missed when using calculations

# 4. Nutrition of patients under continuous renal replacement therapy







#### **Renal Replacement Therapy**

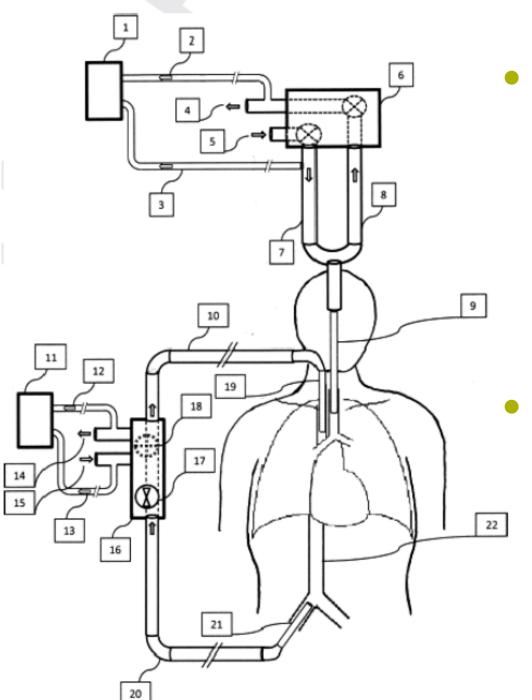
Loss of nutritional substrates

Activation of protein catabolism

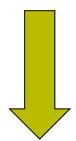
Increase in lipid peroxidation (bioincompatibility)

### Methods

- Systematic review literature 1992-2012
- Nutrition in critically ill patients treated with CRRT
- QUORUM guidelines
- Provide recommendations for daily nutrition management in CRRT practice


| Recommendations (summary) |                                                                                                                                                      |                                                                                                                                                             |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Energy                    | Indirect calorimetry<br>25–35 kcal/kg body weight/day                                                                                                | 60-70% carbohydrates<br>30-40% lipids                                                                                                                       |  |
| Protein                   | 1.5–1.8 g/kg body weight/day                                                                                                                         |                                                                                                                                                             |  |
| Electrolytes              |                                                                                                                                                      | 201                                                                                                                                                         |  |
| K                         | serum level >4 mEq/l                                                                                                                                 | i.v. supplements<br>K-rich replacement fluid<br>K-rich substitution fluid                                                                                   |  |
| P                         |                                                                                                                                                      | i.v. supplements<br>substitution fluid<br>enteral supplements                                                                                               |  |
| Mg                        |                                                                                                                                                      | i.v. bolus 2–4 g/day                                                                                                                                        |  |
| Glucose                   |                                                                                                                                                      | strict glycemia control                                                                                                                                     |  |
| Amino acid                | +0.2–2.5 g/kg body weight/day<br>glutamine (alanyl-glutamine dipeptide)<br>0.3–0.6 g/kg body weight/day                                              |                                                                                                                                                             |  |
| Lipids                    |                                                                                                                                                      | close triglyceride monitoring                                                                                                                               |  |
| Vitamins                  |                                                                                                                                                      |                                                                                                                                                             |  |
| Water-soluble             | vitamin B <sub>1</sub> : 100 mg/day<br>vitamin B <sub>2</sub> : 2 mg/day<br>vitamin B <sub>3</sub> : 20 mg/day<br>vitamin B <sub>5</sub> : 10 mg/day | vitamin B <sub>7</sub> (biotin): 200 mg/day<br>vitamin B <sub>9</sub> (folic acid): 1 mg/day<br>vitamin B <sub>12</sub> : 4 μg/day<br>vitamin C: 250 mg/day |  |
| Fat-soluble               | vitamin B <sub>6</sub> : 100 mg/day<br>vitamin E: 10 IU/day<br>vitamin K: 4 mg/week                                                                  | vitamin A:<br>reduce supplementation                                                                                                                        |  |
| Trace elements            | selenium: +100 μg/day<br>zinc: 50 mg/day<br>copper: 5 mg/day                                                                                         | triple dose of i.v. trace elements-<br>containing solutions                                                                                                 |  |
| Body temperature          | >37°C                                                                                                                                                | Honoré, De Waele E, Blood Purif 201                                                                                                                         |  |

## 5. Indirect Calorimetry during Extra-Corporeal Membrane Oxygenation

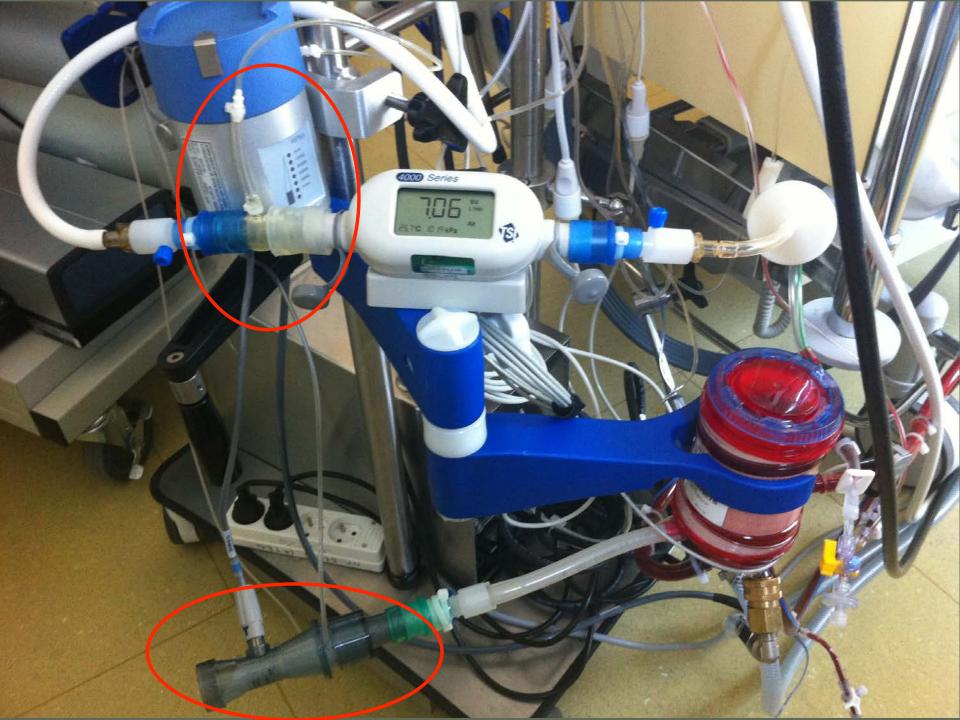



## Nutrition implications and challenges of the transplant patient undergoing extracorporeal membrane oxygenation therapy.

- Provision of adequate nutrition support challenging
- Clinical guidelines are available for the nutrition support of neonates
- No guidelines for the adult population
- Guidelines for nutrition support therapy in the adult critically ill provide best guidance.



30 minutes indirect calorimeter connected to the ventilator




30 minutes indirect calorimeter connected to the oxygenator

De Waele, Acta Anaesthesiol Scand. 2015







```
Calculation case

• Weir: heat output total kg.cal. = (3.9 x L O<sub>2</sub> used + 1.1 x L CO<sub>2</sub> produced)

• Weir abbr REE kcal = {(3.94 x VO<sub>2</sub>) + (1.1 x VCO<sub>2</sub>)} x 1440

• Weir ECMO: REE = {(3.94 x VO<sub>2</sub> total) + (1.11 x VCO<sub>2</sub> total)} x 1440

Weir ECMO: REE = {(3.94 x 0.243 L/min) + (1.11 x 0.203 L/min)} x 1440 min/24h

REE = (0.957 + 0.225) x 1440 = 1.182 L/min x 1440 min/24 = 1703 kcal/day

VO<sub>2</sub> total = VO<sub>2</sub> native lung + VO<sub>2</sub> ECMO

VO<sub>2</sub> total = VCO<sub>2</sub> native lung + VCO<sub>2</sub> ECMO
```

 $VCO_{2 \text{ total}} = 16 \text{ ml/min} + 187 \text{ ml/min} = 203 \text{ ml/min}$ 

VCO<sub>2</sub> ECMO = (FeCO<sub>2</sub> ECMO x VE ECMO) - (FicO<sub>2</sub> ECMO x VE ECMO)

 $VO_2 ECMO = (Fio_2 ECMO \times VI ECMO) - (Feo_2 ECMO \times VE ECMO)$ 

$$VCO_{2 \text{ ECMO}} = (0.0539 \text{ x } 3.5 \text{ L/min}) - (0.00053 \text{ x } 3.5 \text{L/min})$$
  
= 0.189 L/min - 0.00186 L/min = 0.187 L/min = 187 ml/min

VCO<sub>2 native lung</sub> = (Fe<sub>CO2</sub> x <u>VE<sub>native lung</sub></u>) - (Fi<sub>CO2</sub> x <u>VE<sub>native lung</sub></u>)

VCO<sub>2 native lung</sub> = (0.00429 x 4.22 L/min) - (0.00051 x 4.22 L/min)

= 0.0181 L/min - 0.00215 L/min = 0.0160 L/min = 16 ml/min



## Conclusions



### Conclusions (1)

- Nutritional therapy quality was low in our ICU
- Indirect calorimetry is feasible in daily clinical practice and indicated in half of ICU patients
- Equations used to estimate Energy
   Expenditure correlate very weakly with IC-EE

### Conclusions (2)

- Nutritional treatment recommendations for patients undergoing Renal Replacement
   Therapy
- Indirect Calorimetry is made feasible in patients on Extra Corporeal Membrane Oxygenation



Thank you









