

Peripheral and respiratory muscle weakness in ICU: causes and consequences

Greet Hermans

Promotor:Prof Dr M DecramerCo-promotor:Prof Dr G Van den BergheProf G Gayan-Ramirez

Muscle weakness in ICU

Most frequent cause: CIP = acute and primary axonal motor and sensory neuropathy Bolton 1986 CIM = acute primary myopathy Zochodne 1986, Lacomis 2000 Incidence: ± 50% in sepsis, MOF, prolonged mechanical

Stevens, 2007

ventilation

Muscle weakness in ICU

Associated with: Increased ICU stay Increased hospital stay Increased mortality

Stevens 2007, Leijten 1995, Garnacho-Montero 2001, Garnacho-Montero 2005, Nanas 2008

Diagnosis: No universally accepted criteria

Risk factors:

De Jonghe, Crit Care Clin 2007

High suspicion

Low suspicion

Duration of ICU stay/MV Persistent SIRS/MOF

Hyperglycemia

Corticosteroids Neuromuscular blockers

Hypoalbuminemia Parenteral nutrition Hyperosmolarity ERR

Pathophysiology

'just another organ failure'

Bednarik 2005; Witt 1991; Hund 2001b; Hund 2001a; Tepper 2000; Leijten 1996; Zochodne 1987)

CIP/CIM

Hermans et al, Cochrane Database of Systematic Reviews -Protocol 2007

Muscle weakness in ICU

Prognosis: recovery within weeks to months most severe: incomplete or not occur at all de Seze, 2000 Prevention/therapy: reducing risk factors: agressive sepsis treatment, CS, NMBA

physiotherapy

NEUROLOGY

Insulin therapy protects the central and peripheral nervous system of intensive care patients

G. Van den Berghe, MD, PhD; K. Schoonheydt, MD; P. Becx, MD; F. Bruyninckx, MD; and P.J. Wouters, MSc

Muscle weakness in ICU

VIDD: animal experiments:

Controlled mechanical ventilation induces atrophy and weakness of the diaphragm

Mechanisms:

Muscle atrophy Oxidative stress Structural injury Myofiber remodelling

Muscle weakness in ICU

VIDD in humans?

- Critically ill patients have reduced diaphragmatic muscle force

Watson 2001, Laghi 2003

- Diaphragm of organ donors shows atrophy and increased oxidative stress after 18-69u CMV Levine 2008

1. Effect of Intensive Insulin Therapy on Neuromuscular Complications in a Medical ICU

Patients and Methods

 Prospectively planned subanalysis of large RCT comparing CIT versus IIT, in MICU

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 2, 2006

VOL. 354 NO. 5

Intensive Insulin Therapy in the Medical ICU

Greet Van den Berghe, M.D., Ph.D., Alexander Wilmer, M.D., Ph.D., Greet Hermans, M.D., Wouter Meersseman, M.D., Pieter J. Wouters, M.Sc., Ilse Milants, R.N., Eric Van Wijngaerden, M.D., Ph.D., Herman Bobbaers, M.D., Ph.D., and Roger Bouillon, M.D., Ph.D.

Patients and Methods

 Aim: assess impact of IIT on CIP/CIM and prolonged MV, pt in ICU ≥ 7 days

– Diagnosis CIP/CIM: EMG/NCS

– Diagnosis PMV: ≥ 14d

Results

1. CIP/CIM

MVLR:

IIT is independent *protector* (*p*=0.02) Nor glycemia, nor insulin d independently explain benefit

AJRCCM 2007, Hermans et al

2. Prolonged Mechanical Ventilation

MVLR:

IIT is independent protector (p=0.01)

Beneficial effect of IIT is due to insulin dose ↓ CIP/CIM does not entirely explain beneficial effect on PMV

AJRCCM 2007, Hermans et al

Conclusion

IIT reduces the electrophysiological incidence of CIP/CIM and the need for prolonged mechanical ventilation, also in medical patients, in ICU for at least 7 days. 1 Intensive Insulin Therapy (IIT) versus Conventional Insulin Therapy (CIT)

1.1 Occurence of CIP/CIM

	IIT		CIT			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl		
1.1.1 In total population randomised									
Hermans 2007	81	595	107	605	49.6%	0.77 [0.59, 1.00]			
Van den Berghe 2005	46	765	109	783	50.4%	0.43 [0.31, 0.60]			
Subtotal (95% CI)		1360		1388	100.0%	0.60 [0.49, 0.74]	◆		
Total events	127		216						
Heterogeneity: Chi ² = 7.20, df = 1 (P = 0.007); I ² = 86%									
Test for overall effect: Z	= 4.88 (P	< 0.00	001)						
1.1.2 In screened patie	nts						_		
Hermans 2007	81	208	107	212	52.1%	0.77 [0.62, 0.96]			
Van den Berghe 2005	46	181	109	224	47.9%	0.52 [0.39, 0.69]			
Subtotal (95% CI)		389		436	100.0%	0.65 [0.55, 0.77]	◆		
Total events	127		216						
Heterogeneity: Chi ² = 4.68, df = 1 (P = 0.03); I ² = 79%									
Test for overall effect: Z = 4.86 (P < 0.00001)									
							Favours treatment Favours control		

Hermans et al. Cochrane Cochrane Database of Systematic Reviews 2009

2. Effect of Intensive Insulin Therapy in *routine daily care practice* on Neuromuscular Complications

Patients and Methods

- Retrospective analysis of EMG/NCS:
 - performed in MICU and SICU
 - because of weakness/weaning failure
 - from 1998-2006, eliminating RCTs

Results

Glycemic control

Mean glycemia before and after IIT (mean±SD)

Total population before IIT Total population after IIT Surgical population before IIT Surgical population after IIT Medical population before IIT Medical population after IIT

*p-value ≤ 0.05 before versus after

Electrophysiological data

Spontaneous electrical activity before and after IIT

Total population before IIT
Total population after IIT
Surgical population before IIT
Surgical population after IIT
Medical population before IIT
Medical population after IIT

*p-value ≤ 0.05 before versus after

Myopathic pattern present on EMG before and after IIT

Total population before IIT Total population after IIT Surgical population before IIT Surgical population after IIT Medical population before IIT Medical population after IIT

> *p-value ≤ 0.05 before versus after

SNAPs UL before and after IIT

Total population before IIT Total population after IIT Surgical population before IIT Surgical population after IIT Medical population before IIT Medical population after IIT

*p-value ≤ 0.05 before versus after

Prolonged mechanical ventilation

Risk for prolonged mechanical ventilation

Glycemic control, IIT	0.40 (0.22-0.72)	0.002
ICU type, medical	0.35 (0.18-0.67)	0.002
On admission blood glucose	0.99 (0.99-1.002)	0.4
Gender, female	0.74 (0.48-1.12)	0.2
N of d treatment with norepinephrine, per d added	1.16 (1.11-1.22)	<0.0001
Cumulative dose hydrocortisone equivalent, per mg added	1.00 (1.00-1.00)	0.9
Treatment with aminoglycosides, yes	1.72 (1.003-2.96)	0.05
N of d treatment with NMBAs (≥1 bolus or drip), per day added	1.15 (1.04-1.27)	0.007
Number of days treatment with dialysis, per day added	1.09 (1.03-1.15)	0.004
Bactaemia, yes	2.11 (1.26-3.55)	0.005

. . .

. . .

Conclusion

IIT reduces the electrophysiological incidence of CIP/CIM and the need for prolonged mechanical ventilation, also in routine daily practice.

3. Measuring diaphragmatic force in ICU

Methodology

BAMPS

Results

1. Patients

2. Reproducibility

Between-occasion coefficient of variation

Patient 1	Mean	Number of	<u>Time</u>	Coefficient
	<u>value Pdi</u>	<u>measurements</u>	<u>span</u>	<u>of</u>
				variation
Patient 1	12.2	2	24h	1.9 %
Patient 4	11.7	2	24h	15.5 %
Patient 5	8.7	2	48h	6.5 %
Patient 6	15.6	2	48h	2.0 %
Patient 7	9.5	2	120h	16.6 %
Patient 9	10.0	2	24h	16.3 %
Patient 10	20.5	4	24h	9.3 %
mean	12.6	2.3		9.7 %

3. Relationship between TwPdi and duration of mechanical ventilation

Duration of mechanical ventilation

Conclusion

 Similar reproducibility of BAMPS Pdi on ICU as in healthy volunteers
 Logarythmic decline of TwPdi with increasing duration of MV

3. Future perspectives

1. Mechanistic approach:

200 muscle biopsies: effects IIT

2. New potential intervention: EPaNIC

3. Diagnostic approach: Clinical evaluation muscle force in ICU

Thank you:

Promotors: G Van den Berghe M Decramer G Gayan-Ramirez

Thank you:

Electrophysiologist:

- F Bruyninckx
- **Neurologists:**
 - P Van Damme M Schrooten W Robberecht

ICU teams:

Nurses Trainees Residents Staff members

Study nurses: P Wouters and team **Physiotherapists: B** Clerckx **T** Vanhullebusch **C** Robbeets **R** Gosselink ICU Lab: I Vanhorebeek

S Derde