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management: Using big data and algorithms to improve outcomes. 
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1.1   CRITICAL ILLNESS 

1.1.1   Overview 

Patients who suffer from life-threating medical conditions require 
specialized, comprehensive care and constant monitoring. In middle- and 
high-income countries many of these patients are treated in an intensive 
care unit (ICU), where highly specialized nurses and clinicians work 

care may be considered one of the most technologically advanced 
disciplines in modern medicine. Patients in an ICU are continuously 
monitored, treated with powerful drugs and may undergo multiple organ 
support. Examples of organ support are the use of mechanical ventilation 
for respiratory dysfunction, dialysis for renal replacement, and 
extracorporeal membrane oxygenation for cardiac or pulmonary 
conditions. This extremely dedicated and advanced care allows patients to 
survive previously lethal medical conditions such as major trauma, 
congenital conditions, major surgeries, organ dysfunction or severe sepsis. 

ICU mortality has decreased over the years, although it still afflicts 8 to 18% 
of admitted patients [1]. Decreased mortality shifted the attention towards 
morbidity and quality of-life after ICU discharge [1]. ICU survivors may face 
physical and non-physical challenges, such as muscle loss and weakness, 
chronic pain, depression, long-lasting delirium or neurocognitive 
impairment. Prevention of the long-term legacy of critical illness and 
critical care is the main goal of current clinical efforts and research. It is of 
great interest, on the one hand to identify protective mechanisms against 
long-term morbidities. On the other hand, to detect the early pathological 
signs of organ dysfunction or neurological deterioration that may not be 

quality of life after ICU discharge. Critical care is no longer about survival 
but about quality of survival.

1.1.2   Neurological deterioration and neuromonitoring 

Critically ill patients are at risk of long-term neurocognitive impairment, 
which can result from an initial neurological condition or from secondary 
complications that affect the brain. Identifying occurring neurological 
insults and quantifying their effect on brain function can be challenging. 
First, little information can be gained by clinical examination, considering 
that most of the ICU patients are unconscious and/or undergo sedation. In 
addition, more advanced neurological testing requires long-term follow-up. 
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Second, although neurological insults can be identified through radiological 
imaging techniques, such examinations are only done on an intermittent 
basis and require transportation, which can be challenging for the critically 
ill patient. Third, in pediatric patients the measurement of physiological 
variables of hemodynamic status of the brain perfusion, which are 
important contributors to the inadequate substrate delivery to the brain, 
can be inaccurate [2, 3], making the detection of hypotensive insults 
challenging. Fourth, neurological damage can originate from many 
underlying causes, therefore a single monitoring techniques cannot fully 
describe the complexity of the pathophysiological status of the brain. In the 
last years, several techniques have evolved to monitor different aspects of 
the brain status. For example, the partial pressure of brain tissue oxygen 
(PbtO2) or the near-infrared spectroscopy (NIRS) monitor brain 
oxygenation. Intracranial pressure (ICP) can be monitored in trauma and 
non-trauma patients. Microdialysis can be used to monitor regional brain 
metabolism, while transcranial Doppler (TCD) can measure blood flow 
velocity. Finally, electroencephalography (EEG) can be used, among others, 
to detect electrographic seizures. The combination of these techniques 
create value and provide useful information to the clinician. Last but most 
importantly, identifying occurring neurological insults remains challenging 
because neuromonitoring is not yet a perfect science, and even while the 
link between specific neurological insults and mortality is clear for most 
pathologies, the exact association between these insults and long-term 
neurological outcomes remains, in most of the cases, unknown. 

 

1.2   CLINICAL DATA AND MEDICAL DATASETS 

1.2.1   Information overload 

A massive amount of data is generated in an ICU. For each patient, data are 
generated from several patient monitors, laboratory test analysis, imaging, 
reports of clinical evaluations and information on the administered 
treatment (administration of drugs and fluids, initiation of organ support 
etc.). On a daily basis, the clinical situation of the patient is described with 
thousands of data points. These data certainly contain valuable 
information, however their size and complexity exceed human processing 
capacities. As a result, valuable pieces of information may remain buried 
within the data. Clinicians are confronted with this problem, also called 
information overload, on a daily basis. 
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1.2.2   Electronic health records 

The last decades have seen the progressive digitalization of the ICUs. More 
advanced technologies have been introduced not only to display 
information in a more interpretable fashion, but also to store patient data 
in a more organized way. This led to the creation of electronic health records 
(EHRs). EHRs are large databases that organize patient data from different 
sources and different formats, in a structured way. Most of the data are 
stored into an EHR automatically, with two major benefits. First, EHRs 
allow the collection of data that previously could not be collected manually, 
for instance high-frequency monitoring data (mean arterial blood pressure, 
heart rate etc.). Second, EHRs allow the collection of high-quality medical 
data, where human error is minimized.  

The digitalization of clinical datasets accelerated clinical research, not only 
by allowing easier and faster access to patient data, but also by facilitating 
the collection of high-quality multi-center datasets, where data from 
different centers are collected in a uniform way and then merged.  

At the University Hospitals Leuven (UZ Leuven), patient data are collected 
in the Patient Data Management System (PDMS, Metavision®, iMD-
Soft®, Needham, MA, USA). The PDMS collects demographic data, 
severity scores indexes on admission and daily, continuous monitoring data 
on a minute-by-minute basis, laboratory test results, reports of clinical 
evaluation, treatment information and long-term outcomes, for a total of 
approximately 250 GB of stored data per year (ICU data only).  

 

1.3   BIG DATA AND ARTIFICIAL INTELLIGENCE IN THE ICU 

1.3.1   Overview  

Big Data refers to large and highly complex datasets that require advanced 
storage methods and powerful processing techniques. In the early 2000s, 

documents, images, etc.) that compose a single Big Data dataset. Two 
 

quality, which depending on the sources of data, may not always be ensured 
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through advanced analytics.   

The widespread implementation of EHRs has led to the creation of huge 
datasets of clinical data. Although these datasets are relatively small when 

they aggregate information of different formats from different sources. 
These big clinical datasets are more than just the by-product of patient care, 
but represent a cheap source of new knowledge [4], which can help reshape 
and revolutionize several aspects of healthcare, resulting in, for instance, 
improved prognostication, development of new diagnostic tools or 
personalized patient treatment [5, 6].  

Creating new knowledge from Big Data, often referred to as data mining 
(DM), may require more advanced methods than traditional statistics. DM 
includes different algorithms, such as linear regression analysis, Bayesian 
methods, or more advanced machine learning techniques. Machine 

perform a task, by recognizing patterns in data and then applying the 
learned pattern structure to new, unseen data. Through DM techniques it 
is possible to uncover interactions between variables, find hidden 
associations, visualize data in an interpretable way or obtain predictions of 
outcomes, future physiological values or impending threatening events. 
Data mining techniques can be also more broadly referred to as Artificial 
Intelligence (AI). AI can be defined as the science of enabling machines to 
have problem-solving and decision-making capabilities. 

Several successful examples on the application of AI techniques on large 
ICU datasets have been presented. For example, the ML-based prognostic 

[7] was demonstrated to outperform the commonly 
used Sepsis-related Organ Failure Assessment (SOFA) score in assessing 
severity of illness and predicting in-hospital mortality. Also, it was 
demonstrated that a ML model can achieve similar discriminative 
performance as clinicians in the prediction of acute kidney injury in 
critically ill patients [8]. Similarly, several ML model have shown it is 
possible to accurately predict, among others, hospital and ICU readmission 
[9 11], delirium [12] , sepsis [13, 14] or impending brain-threatening events 
[15]. 
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1.3.2   Translation to bedside 

Despite the many recent published models, only a very limited number of 
AI applications are currently used in ICU clinical practice. A recent 
systematic review by Fleuren et al. [16] has scored 172 published studies 
that deployed ML models on ICU datasets on their technology readiness 
level (TRL), which is a scale from 1 to 9, where 9 represents a working 
technology. Only 5 % of the screened studies presented validated results 
(TRL = 5), 1% of the studies prospectively validated the model at the bedside 
in a blinded setting (TRL = 6) and 1% of the articles evaluated the model 
against clinical relevant outcomes (TRL = 8). Not a single study satisfied 
the criteria for a TRL of 9. 

The lack of AI applications at the bedside can be attributed to several 
factors. As every new discipline, AI and in particular ML needs to gain trust 
among clinicians, this is only possible if we strive for transparent and 
effective reporting, while encouraging replicability [17, 18]. To this end, the 
new CONSORT-AI and SPIRIT-AI extensions [19, 20] aim at providing new 
guidelines for the transparent and rigorous reporting of clinical trials that 
involve the use of ML. In addition, to favor transparency, the TRIPOD 
guidelines provide recommendation on reporting of any prediction model 
study regardless of the study type [21]. Another factor that contributes to 
clinician's trust is model's interpretability, or rather the capacity of the 
model to provide insights on which input features most contributed to the 
decision-making process, and to which extent. Interpretability gained 
incredible value in the last years, with many algorithms that have been 
developed for that purpose [22]. The level of required interpretability to 
consider a model trustworthy will mostly depend on center-specific policies 
and on the result of patient consultation. Beside trustworthiness, these 
algorithms must be useful. Surprisingly, several published models do not 
address a clinically meaningful question [17]. Hence, the close collaboration 
between researchers and healthcare workers is essential to deliver 
algorithms that effectively respond to the needs of the clinic. Another 
relevant limitation of AI algorithms for use in clinical practice is that they 
are often developed on a specific population, but they do not necessarily 
capture the real world heterogeneity [17, 18]. As a result, the algorithm 
could be inaccurate when applied to certain subgroups. To these 
limitations, must be added the ethical and privacy concerns raised by the 
use of AI models at the bedside, as well as the large economical investment 
required for the digitization of the ICU. 



7 
 

1.4   DEVELOPMENT OF MACHINE LEARNING MODELS FOR CLINICAL USE 

Creating knowledge from Big Data is a delicate process and requires the use 
of several techniques that range from feature extraction and selection to 
model development and evaluation of the performance. Throughout the 
entire process of knowledge creation, a close collaboration between 
clinicians and data mining professionals is crucial to avoid data misuse or 
misinterpretation.  
The current section aims at providing a general overview of the data mining 
techniques used in this thesis. As in many new technological fields, data 
mining uses specific terminology that is summarized in Table 1.1. 
 

1.4.1   Data quality 

Data collected at the bedside might be prone to human errors, artefacts and 
missing values. In addition, they are inevitably biased by the standard 
clinical practice. Hence, a solid knowledge of the underling 
pathophysiological mechanisms as well as the standard clinical procedures 
are essential for proper data interpretation. In addition, it is important to 
perform a careful and objective data-quality assessment before engaging in 
the analysis, since poor data quality can lead to misleading results. Data-
quality can be assessed by computing the number of missing values for 
specific variables, by checking whether missing values are not linked to the 
presence of a specific medical condition (which could later bias the results), 
by performing a visual examination of data or by analyzing the main 
summary statistics of the data (mean, median, standard deviation, max, 
min).  
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Table 1.1  Data mining terminology 

TERM DEFINITION 

Big Data High-volume datasets that collect multimodal and 
unstructured data from different sources.  

Bootstrapping Method of validation that retrains the model multiple 
times on randomly selected subsets of the dataset. The 
final performance of the model is obtained by averaging 
the performance metrics obtained in every repetition. 

Calibration Calibration quantifies the fit between the probability 
distribution of the predicted events and the proportion 
of events observed in a real sample. The better these two 
match, the better calibrated the model is. Calibration is 
usually visualized through calibration plots. 

Data mining  Set of methods used to create new knowledge from 
datasets of variable dimension. Data mining can be 
performed, among others, with linear regression, 
Bayesian analysis or machine learning techniques. 

Development set Synonym of training set, see below. 

Validation set Dataset on which the model is validated through 
internal or external validation. 

Features Data elements used to train the model.  They ideally 
contain information that are useful for the goal of the 
model. For example: demographic characteristics, 
results of the blood gas analysis or metrics extracted 
from continuously monitored physiological signals. 
They are also referred to as predictors, risk indicators or 
independent variables. 

Feature 
engineering 

Process of using statistical methods or domain 
knowledge to extract meaningful features from a 
dataset.  

Intelligibility In a model, intelligibility refers to the capacity of 
understanding the internal mechanisms of an algorithm 
and identifying the input features that provide the most 
important information to perform the task. 

Machine learning Set of methods that learn from the data the parameters 
of the algorithm that allow to perform the required task 
with the smallest error. 

Outcome label The label is the ground truth or the ideal expected result. 
The outcome label is compared with the result of the 

can be a categorical, ordinal or continuous value. 
Overfitting In machine learning, overfitting indicates the loss of 

generalizability of the algorithm.  
The algorithm learns from the particular characteristics 
of the training data, also called noise. Such 
particularities are not present in other datasets thus 
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leading to loss of performance of the algorithm when 
applied to unseen data. 

Sample Subset of a population, typically a small fraction. In a 
dataset that is composed by np patients, with nf features 
per patient, a sample is a subset of the dataset with a 
number of patients < np, but same nf. A sample can be 
composed also by 1 observation, e.g. 1 patient with the 
corresponding nf features. 

Test set In machine learning, it indicates the subset of data on 
which the trained model is tested. The test set must be 
completely independent from the training set, hence it 
contains data from different patients or hospitals. 

Training set In machine learning, it indicates the subset of data on 
 

Validation Process of evaluating the trained algorithm on an 

hence its generalizability capacities. 
 

 
1.4.2   Feature extraction 

appropriate term in the context of ML techniques (such as random forests 
or Gaussian process reg
context of classical statistical techniques (such as linear regression, or 
Bayesian methods).  
 
The accuracy and performance of the chosen technique greatly depends on 
the quality, quantity and clinical value of the input features. Depending on 
the research question, input features can be characteristics of the patient, 
such as age, sex, or a severity of illness score, or they can be extracted from 

engineering, mathematical methods are used to extract descriptive 
statistics from a physiological signal or a set of clinical data. For example, 
an engineered feature could be the median value of the minute-by-minute 
MAP signal during the first 24 hours of ICU stay.  In this phase, domain 
knowledge is key to identify the most clinically relevant input features 
and/or the data from which to extract them.   
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1.4.3   Feature selection 

Feature selection is the process of selecting the most important features 
from a dataset. This phase has important implications on the performance 
of the model. Feature selection can increase the statistical power of the 
analysis and reduce the risk that the results exclusively depend on peculiar 
characteristics of the dataset in use, i.e. overfitting. During feature 
selection, irrelevant features that can add noise, and therefore negatively 
affect the model are removed. In addition, the use of a small set of features 
favors a potential future clinical implementation. On the contrary, a bad 
feature selection might exclude input features that are actually relevant, 
loosing valuable insights on the research question.  
 
Stepwise feature selection methods aim at obtaining a subset of the most 
important features to input to a model, by including or excluding one 
feature at the time. In this case, feature importance can be estimated with 
different methodologies such as likelihood ratio or logistic regression 
models. Forward selection starts from an empty subset of features. At 
every step, feature importance is calculated, and the most important feature 
is added to the subset of important features. On the contrary, backward 
selection starts from the full set of features and after computing feature 
importance eliminates at each step the least important feature. A backward 
selection approach is normally preferred, given that the method takes into 
consideration the effect of all features simultaneously [23]. The stopping 
rule for inclusion or exclusion of features is a central issue in stepwise 
selection methods, the preferred methods are based on the degree to which 
the model fits the data, while penalizing model complexity. 
 
A more advanced method for feature selection is the LASSO regression 
[24]. When used for feature selection, the LASSO regression is a linear 
model that minimizes the log likelihood cost function by reducing the 
number of input features. The reduction of features is performed by 

ng on which set of coefficients 
maximizes the cost function.  A feature with a coefficient of zero can be 
discarded. LASSO regression has demonstrated superior results as 
compared to the traditional feature selection methods [25]. 

Feature selection can also be performed via mutual information [26, 
27]. Mutual information is a measure of entropy that quantifies the 
dependency between two random variables. In the context of feature 
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selection, it measures the reduction of entropy, i.e. uncertainty, for one 
variable given a known value of a second variable. Features that have high 
mutual information with the target output compose the subset of selected 
features. The advantage of this feature selection method is that it captures 
the non-linear relationship between variables.

In this thesis, the LASSO and mutual information techniques were used for 
feature selection, the combination of these two methods allows to capture 
features that have linear (LASSO) and non-linear (mutual information) 
relationships with the outcome. An example of feature selection from a 
multidimensional dataset is visualized in Figure 1.1.

Figure 1.1 Example of feature selection. The feature selection algorithms selects 
only those features that are relevant to perform the task of interest, represented with 
the blue columns. Features can be demographic data, daily clinical data, or time-
points or features extracted from continuous monitoring signals.

1.4.4   Data mining techniques

Four main aspects should be considered when choosing which data mining 
technique to use: the goal of the analysis, the nature and quality of the input 
data, the complexity of the problem to tackle and the amount of data 
available. The task of interest (may be classification, regression or 
clustering) determines the sub-class of data mining algorithms suitable for 
the scope. Moreover, depending on the type of input data, the use of some 
algorithms might present more advantages than others. The complexity of 
the algorithm should be proportionate to both the complexity of the 
problem and the amount of data available, although increased complexity 



 

12   | INTRODUCTION 
  

does not necessarily result in better models. Complex algorithms may allow 
unraveling intricate problems, at the cost of limited understanding of its 
underlying mechanisms and an increasing demand for bigger training sets. 
Hence, simpler algorithms should be favored, when possible, to promote 
intelligibility and to avoid overfitting. In addition, algorithms that use 
clinically interpretable variables may have a higher probability of being 
accepted by clinicians and incorporated in clinical practice. This section 
provides an overview of the data mining techniques used in this thesis. 
 
LOGISTIC REGRESSION     Logistic regression is one of the most used 
statistical models for the analysis of the linear association between a binary 
outcome and multiple input features. Specifically, the output y of the model 
is restricted between the range y  [0-1] and indicates the probability of an 
event p(y=1), given the value of the input features. To restrict predictions 
to the interval [0,1] the model is defined as a linear function in the logistic 
transformation logit(p(y=1)): 
 

 
 
Where  is an estimate for the intercept  and  is the estimated regression 
coefficient for .  
The coefficients  should be interpreted as the effect of a 1-unit increase of 
the feature  on the logit probability of an event.  The exponent of the 
regression coefficients  allows to calculate the  coefficients, which 
indicates the odds ratios. Predicted probabilities can be calculated as: 

, see Figure 1.2 for the logistic functions. Low logit values 

indicates low probabilities of an event, for instance a logit(p(y=1)) = -4 
corresponds to a p(y=1) = 2%. 

 
Figure 1.2 Logistic function 
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BAYESIAN LINEAR REGRESSION   Bayesian statistics uses probabilities 
to expresses knowledge about an unknown parameter. To explain the main 
principles of Bayesian analysis I will start by giving a brief introduction of 
traditional linear regression (frequentist approach). In traditional linear 
regression, the outcome y is expressed as a linear combination of the 
variables with the estimated regression coefficients . 

The coefficients indicate the increase in y corresponding to a 1-unit 
increase of and are often expressed with an absolute number, a 
confidence interval and a p-value.  

Bayesian statistics describes the regression coefficients using probability 
distributions rather than point estimates, see Figure 1.3. As a result, the 
effect that has on the outcome y is expressed in terms of probabilities. 
The use of probability distributions to represent allows to model the 
uncertainty derived from trying to capture general associations by 
analyzing a limited number of observations.

Figure 1.3 Example of the conceptualization of a linear regression problem as 
formulated in Bayesian statistic. The regression coefficients are expressed in 
terms of probability distributions. For example, the regression coefficient of the 
variable X1 has a positive mean value ( and an entirely positive probability 

distribution. This means that an increase in X1 increases the probability of higher y, 
where represents the most likely increase in y given a 1-unit increase of X1. The 

regression coefficient of the variable X2 has a mean value equal to zero ( , 

therefore it is likely that X2 is uninfluential on the output value. The regression 
coefficient of the variable X3 has a negative mean value ( and a partially 

negative probability distribution. This means that there is a high chance that an 
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increase in X3 will result in a decrease of y, however there is also a small chance that 
an increase in X3 will result in an increase of y. 

 

In Bayesian analysis, the  of the linear regression fitted model (posterior 
 estimates), integrate prior knowledge (results of previous studies or 

common knowledge) with the information provided by the analyzed data, 

this case, represent the predictions about the probability distribution of the 
 estimates before additional information (the analyzed data) becomes 

available. For example, we want to study the association between 
neurocognitive outcomes and duration of hypoxia in children that undergo 
cardiac surgery. We know that other factors, such as the presence of severe 
genetic disorders will affect the outcomes of the children irrespective of 

 validated information 
that can be added to the model even before the model is applied to the data. 
Bayesian statistics allows to include this knowledge in the model, by setting 

 
estimate. Coming back to the previous example, we might set for the  

probability distribution, to indicate that even before seeing the data our 
prior knowledge is that the presence of a severe genetic disorder will have a 
negative effect on the neurocognitive outcomes. In the same analysis we 
might want to correct for other factors, for example the age of the patient, 
of which we do not know the effect on outcomes. In that case we can set a 

-
value of  is equally likely. The inclusion of prior knowledge is important in 
analyses with small-size datasets, where outliers have a bigger influence on 
the results. 

The results of the Bayesian models are presented as the most likely values 
stimates and credible interval. The credible interval (CRI) 

of the posterior distributions indicates the range of values to which the  
estimate belongs with a certain probability.  
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Figure 1.4 Visual representation of the contribution of a prior distribution 
(expectation on the relationship between a certain variable and the outcome of 
interest) and a likelihood distribution (relationship between a certain variable and 
outcomes of interest as observed on the data in analysis) on the posterior 
distribution (estimate of the relationship between a certain variable and outcomes 
of interest in the general population).

GAUSSIAN PROCESSES   Gaussian processes (GP) have been successfully 
used in non-linear regression problems because of their flexible modeling 
abilities [28]. A Gaussian process is a generalization of the Gaussian 
probability distribution. Whereas a Gaussian probability distribution 
describes random variables, a Gaussian process is a probability distribution 
over functions [28]. To make an example, given a set of data points there 
are potentially infinite functions that could fit the data. A Gaussian process 
assigns a probability to each of these functions. The mean of this probability 
distribution then represents the most probable characterization of the data. 
A visual example of Gaussian processes is given in Figure 1.5. In more 
rigorous terms, the Gaussian Process is specified by a mean function 

and a covariance function. The mean function describes the 
expected value of the function across each dimension of . The 
covariance function models the variance along each dimension and 
determines how the different random variables are correlated. It can be 
calculated by applying a covariance function , or kernel, to the data. 
The kernel determines the main properties of the function, for instance, 
whether it describes a periodic or linear trend or a smooth or lumpy 
function. Therefore a Gaussian process can be defined as:
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An example of kernel function is the Rational quadratic kernel, which is 
given by: 
 

 

 
Where  is the overall variance and  is the length-of-scale.  Increasing 
values of  result in a bigger difference in  between adjacent points, 
while increasing values of  make points that are far-away more correlated. 

If points  and  are similar by  the function value at these points 

(  and ) is expected to be similar. 

 
I will further consider an example without noise functions. Once that  
and  are specified, the GP training set (GP prior) consists of a 

distribution of function values    at inputs X. After the training, the GP 
prior is converted into a posterior . The posterior distribution 
can be used to make predictions  at new inputs . The joint distribution 
of observed values  and the predictions  can be written as: 
 

 

Where  and . 
 
The predictive distribution can be expressed as: 
 

 
 

 
 

 

The resolution of this equation requires additional mathematical steps that 
go beyond the purpose of this thesis and therefore will not be discussed. It 
is however important to know that fitting a GP model requires complex 
mathematical transformations that most of the times can be solved only by 
approximation, for this purpose the Cholesky decomposition is often used. 
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Figure 1.5 Visual example of Gaussian Processes. On the left, three examples of 
potential functions that fit the same set of data-points. On the right, a visual example 
of Gaussian process posterior for the same set of data points. The line in blue 
represents the mean value of the probability distribution, which is also the function 
that most likely fits the data. The area in light-blue represents the probability 
distribution over functions that fit the data points.

DECISION TREES    Decision trees (DTs) are ML models which can be used 
for regression or classification [29]. They are built by recursively 
partitioning the data points of a dataset in sub-groups. A specific output, 
for example a class or a discrete value, is assigned at each of the final 
obtained sub-
allow to achieve a desired task with the best performance. The partition is 
based on the maximization of a cost function and it proceeds until the 
combination of questions that best fits the dataset is found or until a 
stopping condition is reached. The series of partitions that compose a DT 
can be represented graphically in a flowchart-like structure, see example of 
Figure 1.6.
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Figure 1.6 Example of decision tree for a clinical problem. In the simplified 
example, the decision tree is used to decide which treatment is better for a patient 

DTs have several advantages, first they can capture linear and non-linear 
associations. Second, they do not require big amount of data to be trained. 
Third, they are interpretable. Interpretability is an important aspect when 
performing research on clinical data. However, a major disadvantage of 
DTs is their risk of overfitting, which occurs when the questions used for 
the partitions are not generalizable enough to other unseen datasets. Also, 
DTs can be unstable, in fact small variations in the data can lead to a 
completely different tree being generated.  To avoid overfitting and 
instability, it is recommended to limit the depth of the trees, or rather the 
number of successive splitting questions that can be used to achieve a task. 
Another measure to reduce overfitting is to set a minimum number of 
samples that are required to further split the data. 

RANDOM FOREST   Random forest (RF) is an ensemble ML model that 
combines multiple DTs [30], see Figure 1.7. Each DT is built on a random 
selection of samples from the dataset (selection with replacement, also 
called bootstrap aggregation), the final output of the RF model is a weighted
mean of the outputs of each DT that composes the model. This methodology 
improves performance as compared to a simple DT and reduces the risk of 
overfitting and instability. The success of RF relies on the fact that each DT 
that composes the RF model is quite different from the others, and as such, 
each DT captures different patterns in the data. Low correlation between 
DTs is obtained by training each DT on a randomly selected subset of data 
and on a randomly selected subset of features. An additional optimization 
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parameter to avoid overfitting is the maximum number of trees that can 
compose a RF model.

Figure 1.7   Comparison between decision trees and random forest. The possible 
f each 

decision trees are represented with a blue question mark. Panel A) decision tree. 

random forest. In this example, the random forests model is composed by 4 decision

the random forests model. Each of the decision tree that compose the random forest 
is trained on a randomly selected subset of samples and features.

1.4.5   Evaluation metrics

Model performance refers to the degree of agreement between the results 
of a model and the ground truth. Performance evaluation has many facets, 
and as such, it is evaluated through different statistical measures that 
provide complementary information. 

In the case of a classifier, true positives (TP) and true negatives (TN) 
indicate respectively the number of positives and negative samples that are 
correctly classified. False positives (FP) and false negatives (FN) indicate 
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respectively the number of negative and positive samples that are 
misclassified. Normally the condition of interest is labelled as positive. 

The discrimination of the model, or rather the capacity of the model to 
correctly discriminate between patients with and without a condition of 
interest can be quantified with different metrics such as: accuracy, 
precision, negative predictive value, sensitivity and specificity. 

Accuracy indicates the overall ability of the model to discriminate between 
classes.  

 

Precision, or positive predictive value (PPV), is a measure of 
accuracy that is exclusively limited to the condition of interest. It indicates 
the probability of having the condition of interest after a positive test result. 

 

Negative predictive value (NPV), indicates the probability of not 
having the condition of interest, after a negative test result. 

 

Sensitivity, or recall, indicates the ability of the model to correctly 
identify the condition of interest. 

 

Specificity indicates the ability of the model to correctly identify when the 
condition of interest is not present. 

 

 

The receiver operating characteristic curve (ROC curve) is a plot 
that displays the performance of a classification model in terms of 
sensitivity and 1  specificity at all classification thresholds. Through the 
ROC curve it is possible to appreciate the trade-off between sensitivity and 
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specificity. In fact, lowering the classification threshold results in increased 
sensitivity at the cost of lower specificity, and vice versa. To maximize 
performance, the optimal classification threshold can be computed from 
the ROC by extracting the threshold on the curve that is the closest to the 
top-left corner of the plot. The area under the ROC (AUROC or AUC) is an 
aggregated measure of the performance of the model across the entire set 
of classification thresholds.  AUC can range between 0.5 and 1, where 0.5 
would indicate a random classifier, and 1 a perfect model. Depending on the 
problem, an AUC of 0.7-0.8 is considered adequate for clinical models [23]. 
The advantages of the ROC and the AUC is that they are scale-invariant, 
therefore their measure does not depend on the absolute value of the 

ROC and the AUC give an objective estimation of the discrimination 
abilities of the model that does not depend on the chosen classification-
threshold. However, these two metrics have also some limitations. They do 
not provide any quantification of calibration, and they may not fully 
describe the model discrimination capacities when high sensitivity or high-
specificity are required. 

Differently from the ROC curve the precision recall curve displays the 
precision of a classifier as a function of recall (also called sensitivity) at all 
classification thresholds [31]. The trade-off between precision and recall 
can be useful in selecting an optimal threshold. The area under the 
precision recall curve (AP) measures the performance of the model 
across the entire range of thresholds. The optimal threshold can be 
extracted from the curve, and it corresponds to the point that maximizes 
the harmonic mean of precision and recall; 
f = (2*precision*recall)/(precision+recall). Differently from the AUC, the 
AP does not depend on the prevalence of the condition of interest in the 
dataset in analysis. AP ranges between 0 and 1, with random performance 
equal to sample prevalence in the local dataset.  

Calibration refers to the degree of agreement between the incidence of a 
condition of interest in a population and the incidence of the same 
condition in the predictions of the model, see example in Figure 1.8. For 
instance, in a population of 100 patients where the incidence of asthma is 
20%, a well-calibrated model will predict this condition on about 20 
patients. Model calibration can be visually assessed with the calibration 
curve, which plots the predicted probabilities of a condition of interest 
versus the observed proportions in the population. In case of a binary 
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output, the continuous range of observed proportion is calculated across 
bins with the Loess algorithm [32]. Normally the calibration curve is 
compared with a diagonal line at 45  that represents a perfectly calibrated 
model, lack of statistical difference (p-value>0.05) with this line indicates 
good calibration. The calibration curve can be characterized with two 
statistics: the calibration slope and the calibration-in-the-large. The first 
one indicates the slope of the fitted curve, while the latter indicates the 
intercept of the fitted curve on the y-axis. A perfectly calibrated model has 
calibration slope = 1 and calibration-in-the-large = 0. The degree of 
uncertainty around the calibration curve is plotted with the calibration belt, 
which indicates the range of values to which the general calibration curve 
belongs given a certain confidence level [33]. 

 

Figure 1.8   Example of a calibration plot. The line in blue indicates the calibration 
curve, while the area in light-blue indicates the calibration belt for a confidence level 
of 0.95. The dashed line in black represents a perfectly calibrated model.  

 

Clinical usefulness represents the clinical benefit that derives from the 
use of a model as compared to the standard policy without the model and it 
evaluates the performance of a model in a decision-analytic perspective. To 

-
definition of such threshold does not depend on statistical criteria, but 
rather on the context of the decision. For example, in the evaluation of a 
classifier for cancer diagnosis, it may be more relevant from a clinical point 
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of view to minimize the number of false negatives and therefore avoid 
misdiagnosis, rather than to avoid false alarms. On the contrary, in the 
evaluation of a model that provides decision-support for the administration 
of a drug with very severe side effects, a model that minimizes false positives 
may be preferred over a very sensitive model. The best decision threshold 
depends on a trade-off between the harm and benefits that are associated 
with a classification or a prediction. As a result, the best decision threshold 
for a model might not necessarily coincide with the threshold that 
maximizes performance metrics such as accuracy or precision, but it could 
rather be the threshold that better adapts to the needs of the context in 
which the model is used.  

However, in practice, it is difficult to define an optimal decision threshold 
precisely. First, to find a threshold that applies to the general population a 
huge amount of data is needed. Second, optimal decision thresholds may 
vary across patients, depending on their clinical history and personal needs. 
In a real-life context, a range of decision thresholds may be more 
appropriate. The range of decision thresholds in which the model presents 
clinical usefulness can be visualized with a decision curve. A decision 
curve is a visual representation of the clinical usefulness of a model across 
the range of possible decision thresholds [34]. In a decision curve clinical 
usefulness is calculated as net benefit (NB), see equation below.  

 

Where w indicates the ratio of harm-to-benefit and n is the total number of 
subjects over which the net benefit is computed. 

patient is treated for a certain condition irrespective of whether they may 

and therefore the NB is equal to zero. A model is clinically useful if it has 

lds, as shown in 
the example of Figure 1.9. 
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Figure 1.9  Example of decision curve. The curve plots the net benefit versus the 
corresponding decision threshold. The line in blue indicates the net benefit (NB) of 
the model, the light-blue area indicates the 95% confidence interval of the curve. 

-dotted line indicates the NB for the default treatment 
 

 

1.4.6   Validation techniques 

Validation is an essential step in data mining and refers to the assessment 
of the model performance on previously unseen data. Two types of 
validations can be performed. Internal validation is a minimum 
prerequisite of model development, and it assesses the performance of the 
model on a previously unseen dataset that is generated from the same 
setting as the development dataset. During model development, internal 
validation can be used to avoid overfitting and reduce bias in model 
performance. External validation assesses the performance of the model 
when applied on a completely independent dataset, and as such, it 
measures the capacity of the model to generalize.  

One technique for internal validation is k-folds cross-validation, where 
the development cohort is randomly divided into k subgroups (or folds). 
Iteratively, the model is trained on k-1 folds, and internally validated on the 
remaining fold, see the example at Figure 1.10. The procedure is repeated 
until all 10 folds have been used as internal validation cohort. The final 
performance of the model is given by the average of the performance on the 
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k internal validation cohorts. Normally used values for k are 3, 5 and 10. 
Cross-validation has been proven to be a very robust technique for model 
development, however it is not recommended in case of small datasets, 
given that the splitting of the data in k folds may decrease power.

Figure 1.10  Example of k-folds cross validation, where k =3. At every iteration, 
the dataset is divided into 3 folds, 2 folds are used to train the model and 1 fold for 
internal validation. Each fold may have a different prevalence of patients with or 
without the condition of interest, in orange and blue respectively. The final 
performance of the model is the average of the performance of the model on each 
testing set.

External validation can be further divided in temporal and/or 
geographical validation. In temporal validation, there is temporal 
independence between the development and external validation cohort. For 
example, two datasets can be considered temporal independent if they are 
collected in the same setting but 10 years after one another. In geographical 
validation, development and validation cohorts are collected in two 
geographically different settings. For example, two datasets simultaneously 
collected in two different European countries can be considered 
geographically independent. Therefore, external validation assesses 
whether the model is robust towards changes in clinical practice or center-
wise differences in patient management or data acquisition. Also, external 
validation may help identifying whether a model needs to be recalibrated if 
used on a new population. It is important to externally validate the model 
on sufficiently large datasets, so that lack of statistical power does not result 
in misleading conclusions about the generalizability of the model.
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1.5   RESEARCH QUESTIONS 

This thesis contributes to the line of research that aims at reducing the long-
term legacy of intensive care, with a focus on neurological outcomes. More 
specifically, the  thesis will focus on three main objectives: 

 Unraveling complex associations between neuro-monitoring 
signals and long-term neurological and neurocognitive outcomes. 

 Predicting the occurrence of potentially harmful intracranial events 
that may lead to poor long-term neurological outcomes. 

 Developing and validating a decision support application that 
brings part of the knowledge acquired in this thesis to the bedside. 

Three different types of neuro-monitored patients are studied: pediatric 
patients after surgery for congenital heart defects, patients with sub-
arachnoid hemorrhage and patients with severe traumatic brain injury. 

1.5.1   Pediatric patients after surgery for congenital heart defects 

Congenital heart defect (CHD) is a structural malformation of the heart or 
great vessels [35]. It includes cardiac defects such as patent ductus 
arteriosus, atrial septal defects, aortic stenosis or bicuspid aortic valve [35]. 
This pathology, which affects about 8 out of every 1000 newborns [36, 37], 
can have enormous repercussions on the cardiac function and systemic 
blood circulation of the child, to the extent that about 25% of cases require 
corrective surgery in the first year of life [37]. 

Although most cases of CHD can be corrected through surgery with low 
mortality, children with severe CHD often present long-term 
neurodevelopmental deficits [36]. Reduced neurodevelopment can be 
linked to several combined factors, but one key aspect is the neurological 
damage provoked by insufficient cerebral oxygenation, which can occur 
during the gestational and perioperative period [36]. 

At birth, children with severe cases of CHD often present gray and white 
matter injuries or signs of maturation delays [38 40]. White matter lesions 
are the more extensive, and tend to expand or even appear after birth, 
during the intraoperative and early post-operative period [41, 42]. The 
main cause of these lesions are hypoxic and ischemic events [36],  which 
are a consequence of the frequent post-operative fluctuations in cerebral 
oxygenation, due to limited or absent cerebrovascular autoregulation [36, 
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43 45]. Therefore, to maximize outcomes, clinical efforts aim at providing 
optimal cerebral perfusion during the entire perioperative period.  

Monitoring cerebral perfusion is challenging in pediatric patients [46]. 
Invasive hemodynamic monitoring is possible, but not free from 
complications such as bleeding, arterial obstruction, thrombosis of central 
venous circulation and sepsis [47, 48]. CT perfusion imaging is non-
invasive, but sporadic. Moreover, depending on the hospital organization, 
the execution of imaging examinations may require long transportation 
outside the ICU. Transportation poses inherent risks for the critically ill 
child, due to the physical displacement of the patient, changes of organ-
support devices, equipment failure due to transport or dislodgement and 
disconnection of some monitoring devices. Given the limitations of the 
traditional methods, in the last years Near-Infrared Spectroscopy (NIRS) 
has gained importance as a non-invasive method to assess continuous 
measurements of regional brain tissue oxygen saturation (SctO2) [49, 50]. 
An example of NIRS monitor is displayed in Figure 1.11. 

NIRS is a light-based technology which relies on the capacity of near-
infrared light to propagate a few centimeters into biological tissues, 
including skin and bones [51 53]. The propagation of light in the tissues 
depends on three main factors: reflection, absorption and scattering [51]. 
Light absorption is a key element in the functioning of NIRS. In fact, each 
compound present in the tissue absorbs near-infrared light differently, 
where the overall attenuation of the incident light is given by the sum of 
light absorbed by each compound [51]. NIRS technology is based on the fact 
that the absorbance spectrum of hemoglobin differs depending on whether 
it is bounded with oxygen (oxygenated vs deoxygenated hemoglobin) [51
53]. The use of near-infrared light at different wavelengths allows for the 
calculation of the relative concentrations of oxygenated and deoxygenated 
hemoglobin in relation to the total hemoglobin concentration, allowing for 
a measure of oxygen saturation [51, 52].  In a pediatric setting the NIRS 
cerebral oximeter can be used to measure the local cerebral tissue oxygen 
saturation of the frontal lobe of the child.  
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Figure 1.11   Example of near infrared monitoring. For neuro-monitoring 
purposes, the electrodes are placed on the forehead of the child.

Although NIRS is a promising tool for the neuro-monitoring of children 
with CHD, the range of safe physiological SctO2 values is not well defined 
[52], and may lie between 55% and 80%. As a result, clear guidelines on 
SctO2 interpretation and treatment are lacking, and the common clinical 
practice is limited to preventing events of extreme hypoxia (SctO2<40-50%) 
and of hyperoxia (SctO2>85-90%). The potential clinical benefit of this 
practice remains a topic of discussion [54]. 

Over the last years, scientific focus has shifted to better identifying the lower 
end of the safe SctO2 range. Interestingly, recent studies have shown that 
reduced SctO2 is not only associated with increased mortality but also with 
increased neurodevelopmental impairments [55, 56], suggesting that  
neurological damage may already occur at higher SctO2 levels. Therefore, 
in children undergoing corrective surgery for CHD it remains unclear which 
are the SctO2 target levels to reduce mortality and to avoid the long-term 
neurocognitive impact of the peri-operative period. Several studies have 
tried to address this question but with inconsistent results, mostly due to 
the limited number of children enrolled.

1.5.2   Traumatic brain injury

Traumatic brain injury (TBI) is defined as an alteration of brain function 
caused by the impact of a strong external force on the head [57]. This 
traumatic event can occur, among others, because of a traffic or sport 
accident, or as a result of a fall. TBI is a major cause of death and disability 
worldwide, with a mortality rate around 15%-30% [58], and almost half of 
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the survivors that experience long-term physical, psychiatric and cognitive 
disabilities [57, 58]
accounts for approximately 2.5 million new cases each year, only in 
Europe [57].  

In TBI, the initial traumatic event triggers a series of pathophysiological 
mechanisms that can lead to additional brain damage, called secondary 
brain injuries (SBI). Clinical efforts are not focused on treating the initial 
injury, which is considered irreversible, but on preventing SBI from 
occurring. Management of TBI aims at achieving four main targets: 
optimization of cardiorespiratory physiology, safeguarding nutrient and 
oxygen supply, maintenance of cerebral perfusion pressure (CPP) and 
control of intracranial pressure (ICP) [57]. The ICP is the pressure that 
fluids such as the cerebrospinal fluid (CSF) and the arterial and venous 
blood, exert on the brain tissue inside the skull and the CPP is the pressure 
gradient that allows blood to enter the brain. CPP can be calculated as the 
difference between the mean arterial blood pressure (MAP) and the ICP. 

Management of TBI is based on a staircase approach of increasing 
treatment intensity [59, 60], even though none of these treatments are risk-
free and, when applied inappropriately, can be associated with worse 
outcome.  Recent SIBICC recommendations [60] classify as first-tier 
therapies: sedation, hyperosmotic infusions, limited hyperventilation, and 
drainage of cerebrospinal fluid. Second tier therapies include more 
intensive hyperventilation, administration of neuromuscular blockade and 
in presence of functioning autoregulation increasing CPP with fluid 
boluses, vasopressors and/or inotropes. The most aggressive tier, also 
referred to as third tier, includes mild cooling (to core temperatures of 35
36°C), deep sedation for metabolic suppression and decompressive 
craniectomy (surgical removal of a portion of the brain skull to allow brain 
swelling). Third tier therapies should be considered as last resorts therapies 
in case the patient did not respond to previous treatments. 

Most of these treatments aim at preventing or controlling extreme ICP 
elevations, which are one of the main causes of SBI. Elevated ICP has been 
associated with poor neurological outcomes and death in multiple 
studies [57, 61, 62]. After the initial traumatic event, systemic and 
intracranial events such as edema, ischemia, or contusion expansion, can 
provoke the rise of the ICP to potentially dangerous levels. Elevated ICP can 
impair the CPP, putting brain perfusion at risk, but also it can mechanically 
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distort the brain, leading to herniation of the brain steam and death. An 
example of physiological and pathological ICP and ICP monitoring is 
provided in Figure 1.12. 

ICP monitoring may be performed through two methodologies. In the first 
methodology a catheter, called external ventricular drain (EVD), is placed 
in a lateral ventricle and connected to an external transducer through a 
fluid-filled system. This allows to obtain an ICP measurement, but also to 
drain cerebrospinal fluid (CSF), if needed. An EVD is considered the 
standard of care for ICP monitoring, however it may provide inaccurate 
readings during CSF drainage. Alternatively, a probe may be inserted in the 
intraparenchymal space of the brain, this is called intraparenchymal ICP 
monitoring. Intraparenchymal monitoring alone does not allow for CSF 
drainage but it provides more reliable ICP readings. In the ICU of UZ 
Leuven intraparenchymal ICP monitoring is considered the gold standard 
and it is often used in parallel with an EVD catheter. 

Although optimal treatment thresholds for elevated ICP remain uncertain, 
current guidelines suggest to start aggressive treatment (third-tier 
therapies) when the ICP rises above 22 mmHg [63]. The clinical validity of 
a threshold based strategy is debated [64, 65]. First, the proposed threshold 
is population-derived (from a single-center study), therefore it does not 
allow therapy to be targeted to specific subgroups of patients. Second, some 
studies have shown that ICP levels lower than 22 mmHg might also be 
associated with worse neurological outcomes [66]. Third, secondary injury 
by elevated ICP is not adequately defined by the simple, sometimes brief, 
crossing of a universal threshold. 

 



31 
 

 

Figure 1.12 Intracranial pressure under normal and abnormal conditions. Under 
normal conditions, the intracranial pressure (ICP) remains constant at 10 to 15 mm 
Hg, fluctuating with cardiac and respiratory cycles, as shown in the normal trace 
recording (Panel A). Since the cranium is a rigid container, the sum of the various 
intracranial volumes (brain tissue, cerebrospinal fluid, and blood) must remain 
constant. Cerebrospinal fluid is continuously formed and reabsorbed, with the 
circulation indicated by blue arrows. Several intracranial and systemic causes may 
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alter the intracranial components and cause pathologic increases in intracranial 
pressure. For example, a traumatic left subdural hematoma that compresses the 
brain and shifts the lateral ventricles to the right, as shown on computed 
tomography (Panel B). The hematoma volume cannot be compensated by buffering 
systems, and there is a corresponding increase in intracranial pressure, which can 
be recorded through a catheter inserted in a lateral ventricle (also allowing the 
withdrawal of cerebrospinal fluid) (Panel C). The catheter is connected to a 
collecting system, to which cerebrospinal fluid can be drained, and to a monitor, 
where the trace recording of intracranial pressure is displayed. Intracranial 
hypertension may cause compression and displacement of the cerebral tissue from 
areas of higher pressure toward areas of lower resistance (Panel D). Brain herniation 
occurs in three main ways. First, a hemisphere is displaced medially against the falx, 
resulting in falcine herniation. Second, a unilateral pressure gradient pushes the 
medial edge of the temporal lobe (uncus) through the tentorial foramen, resulting 
in uncal herniation. In this syndrome, the third cranial nerve and the posterior 
cerebral artery are compressed, causing unilateral pupillary dilation, a lack of 
reactivity to light, and infarction. The brain stem is distorted and compressed, with 
early impairment of consciousness. Third, a bilateral, homogeneous increase in 
intracranial pressure in the supratentorial space displaces the brain downward 
through the tentorial foramen, resulting in central transtentorial herniation. The 
brain stem is compressed and displaced downward without signs of lateralization 
and with bilateral pupillary abnormalities. Reproduced with permission from N. 
Stochetti, A. Maas, Traumatic Intracranial Hypertension, N Engl J Med 2014; 
370:2121-2130. Copyright Massachusetts Medical Society. 

 

The ICP dose, i.e. the combination of intensity and duration of an ICP event, 
might offer a better representation of SBI due to elevated ICP [67]. The dose 
is a composite measure that takes into consideration not only the ICP 
intensity but also its duration, as represented with the gray area in Figure 
1.13. Elevated ICP doses have been associated with poor long-term 
neurological outcomes [66 71], indicating that changes in ICP over time 
may have a greater clinical relevance than ICP as an absolute value. The 
association between doses of ICP and worse outcomes, can be visualized 
with the plots introduced by Güiza et al. [66], see Figure 1.14, that was 
further replicated in other large datasets [68, 72]. An exponential black line, 
also called transition curve, separates the ICP doses that occur more 
frequently in patients with worse neurological outcomes (represented in 
red) from the ICP doses that occur more frequently in patients with better 
outcomes (represented in blue). These studies suggest that high ICP values 
can be tolerated if maintained for a short period. On the contrary, ICP 
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values between 15 mmHg and 22 mmHg, if maintained for a prolonged 
time, could still be associated with poor neurocognitive outcomes. The 
visualization suggest that there is a broad set of ICP doses that is not 
addressed in the guidelines although associated with worse long-term 
neurological outcomes. In spite of this epidemiological work [66 68, 72], 
the concept of ICP dose is not currently used in the clinical practice to 
evaluate the patients clinical status.

     

Figure 1.13   Visual representation of ICP dose. Example of dose of ICP above 
22 mmHg, the dose of ICP, represented with the gray area, is the total area where 
ICP is above a certain threshold for a certain duration.

Figure 1.14   Visualization of the association between dose of ICP and long-term 
neurological outcomes in patients with TBI [66]. The plot shows, in a color-coded 
fashion, the association between events of at least a certain intensity X that lasts at 
least for a certain time Y and long-term neurological outcomes, quantified with the 
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Glasgow Outcome Score (GOS) at 6 months. Doses of ICP that occur more 
frequently in patients with better long-term neurological outcomes (higher GOS) 
are represented in blue, while points of ICP that occur more frequently in patients 
with worse long-term (lower GOS) outcomes are represented in red. A black 
exponential line, called transition curve, divides the two regions. 

 

Given the complexity of TBI pathophysiology, ICP alone cannot provide 
complete knowledge of the status of the brain [62, 73]. For instance, the 
mean arterial blood pressure (MAP) is an important contributor to the 
perfusion status of the brain. Similarly, local brain oxygenation can be 
monitored with the partial brain tissue oxygen (PbtO2), which monitors the 
balance between oxygen delivery and consumption. Moreover, 
cerebrovascular autoregulation (CAR) plays a crucial role in guaranteeing 
oxygen and nutrient supply. CAR is a dynamic phenomenon that is difficult 
to assess in a clinical context [74] and for which computational indices, 
such as the Pressure Reactivity index (PRx) [75] or the low-frequency 
autoregulatory index (LAx) [76], have been proposed. Both indexes are 
calculated as moving correlation between the MAP and ICP signals, a PRx 
above 0.3 and a LAx above 0 indicate impaired CAR. Currently, none of 
these indexes is available at the bedside unless in the form of research 
software (ICM+, Cambridge Enterprise Ltd., UK).  

For patients with TBI, there is an urgent demand for a better definition of 
ICP-targeted therapy, as well as a need to bring knowledge derived from 
previous research, such as the concept of ICP dose or computational 
indexes of CAR, to the bedside. 

1.5.3   Sub-arachnoid hemorrhage 

Aneurysmal subarachnoid hemorrhage (aSAH) is a type of stroke most 
frequently caused by the rupture of an aneurysm of one of the cerebral 
arteries, which results in the outflow of blood in the subarachnoid 
space [77]. aSAH has high mortality [78], and approximately half of the 
survivors are at risk of long-term physical and neurocognitive 
impairment [79]. The main risk factors for poor outcomes are 
level of consciousness at ICU admission and the amount of sub-arachnoid 
blood as quantified by an initial computed tomography (CT) scan of the 
head [80]. The Modified Fisher Scale is used to score the sub-arachnoid and 
intraventricular blood [81]. Two main severity scales are used to grade level 



35 
 

of consciousness, the Hunt and Hess [82] and the World Federation of 
Neurosurgical Surgeons [83]. 

The ruptured aneurysm needs to be secured as soon as possible to prevent 
re-bleeding, which can occur in up to 7% of patients [84, 85]. Re-bleeding 
has a mortality rate of around 50% and is an important cause of poor long-
term neurological outcomes [84]. Treatment options for aneurysms are 
neurosurgical clipping and endovascular coiling, depending on the age, 
clinical stability of the patient and the location of the aneurysm [77]. Once 
the aneurysm is secured, clinical attention is focused at preventing 
secondary complications [77, 85], such as vasospasm (46% of patients) [85, 
86], hydrocephalus (20% of patients) [87] and increased ICP (81% of 
patients) [88, 89].  

To prevent vasospasm, hypertension is allowed after securing the 
aneurysm, although the safe range remains unclear [77]. Hyperglycemia 
and hyperthermia should be corrected, given their association with poor 
outcomes [77, 90]. Prophylaxis of deep venous thrombosis should be 
started as early as possible [77, 90]. Calcium antagonists can be prescribed 
to reduce the risk of ischemic complications [77, 90]. External ventricular 
or lumbar drain can be used to treat hydrocephalus [77, 90]. 

Regarding the prevention and management of increased ICP, 
recommendations for patients with SAH [90] are based on the guidelines 
for patients with severe TBI, with the underlying hypothesis that the 
treatment threshold that is valid for patients with TBI can be equally 
applied to patients with SAH. As a result, similarly to TBI, also in patients 
with SAH aggressive treatment for elevated ICP is initiated when the ICP 
rises above 20-22 mmHg. However, there is no robust data to support this 
hypothesis. Although elevated ICP in patients with SAH is associated with 
increased mortality and poor long-term outcomes [88, 89, 91], safe ICP 
levels for patients with SAH remain unknown and specific 
recommendations for ICP management in SAH are missing. As a result of 
these uncertainties, treatment protocols for the management of elevated 
ICP in patients with SAH highly differ between centers. For example, ICP is 
only monitored in some centers, and only in the most severe cases of SAH. 
As previously explained, ICP monitoring is normally performed through an 
external ventricular drain and an intraparenchymal probe. 
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2 

OBJECTIVES 

 
2.1   GENERAL AIM 

The general aim of this thesis is to use artificial intelligence to gain insights 
on the complex association between neuro-monitoring signals and long-
term neurocognitive outcomes in critically ill patients at risk of brain 
injuries and to develop accurate decision support applications for the use at 
the bedside. The ultimate goal of this thesis is to create knowledge that 
contributes to the line of research aimed at reducing the long-term 
neurocognitive burden of critical illness. 

 

2.2   RESEARCH OBJECTIVES 

Objective 1 The first objective of this thesis is to investigate the 
independent association between brain tissue oxygen saturation (SctO2) 
and long-term neurocognitive outcomes in pediatric patients after cardiac 
surgery for congenital heart diseases. Using data from a prospective 
observational study, I will investigate whether post-operative reduced 
SctO2 values and increased SctO2 desaturation is associated with reduced 
total IQ at 2 years follow-up (Chapter 3). 

Objective 2 The second objective of this thesis is to investigate the 
independent association between elevated doses of intracranial pressure 
and long-term neurological outcomes in patients with sub-arachnoid 
hemorrhage. The independent association between ICP dose and outcomes 
will be investigated in a large multi-center cohort. Moreover, I will visually 
explore this association by using advanced visualization techniques from 
previous epidemiological studies (Chapter 4). 

Objective 3 The third objective of this thesis is the temporal and 
geographical validation of an existing machine learning model for the 
prediction of episodes of extremely elevated intracranial pressure in 
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patients with traumatic brain injury on a large, prospectively collected 
European dataset (Chapter 5). 

Objective 4 The fourth objective of this thesis is to develop a machine 
learning prediction model for the early detection of future episodes of 
harmful doses of intracranial pressure in patients with traumatic brain 
injury. To achieve this objective I will use two of the biggest European 
multi-center datasets of demographics and high-quality monitoring data of 
patients with traumatic brain injury (Chapter 6).  

Objective 5 The fifth objective of this thesis is to design, implement and 
validate through a prospective study, a bedside decision-support software 
prototype for the management of patients with traumatic brain injury. The 
software not only provides predictions of potentially harmful ICP events, 
but it also computes and displays relevant metrics for the management of 
patients with traumatic brain injury (Chapter 7,8). 
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ABSTRACT 

 

PURPOSE:   During the early post-operative period, children with 
congenital heart disease can suffer from inadequate cerebral perfusion, 
with possible long-term neurocognitive consequences. Cerebral tissue 
oxygen saturation (SctO2) can be monitored non-invasively with near-
infrared spectroscopy (NIRS). In this prospective study, we hypothesized 
that reduced SctO2 and increased intensity and duration of desaturation 
(defined as SctO2 < 65%) during the early post-operative period, 
independently increase the probability of reduced total IQ, 2-years after 
admission to a Pediatric Intensive Care Unit (PICU). 

METHODS:   The study included pediatric patients after surgery for 
congenital heart disease admitted to the PICU of the University Hospitals 
Leuven, Belgium between 2012 and 2015. Post-operative cerebral perfusion 
was characterized with the mean SctO2 and dose of desaturation of the first 
12 hours and 24 hours of SctO2 monitoring. The independent association of 
post-operative mean SctO2 and dose of desaturation with total IQ at 2-years 
follow-up was evaluated with a Bayesian linear regression model adjusted 
for known confounders. 

RESULTS:   According to a non-informative prior, reduced mean SctO2 
during the first 12 hours of monitoring results in a loss of IQ points at 2-

nterval] 
0.23 [0.04 to 0.41]). Similarly, increased dose of SctO2 desaturation would 
result in a loss of IQ points at 2-
estimates [80% credible interval] -0.009 [-0.016 to -0.001]). 

CONCLUSIONS:   Increased dose of SctO2 desaturation and reduced mean 
SctO2 during the early post-operative period, independently increase the 
probability of having a lower total IQ, 2 years after PICU admission.  
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3.1   INTRODUCTION 
Half of all children with congenital heart disease (CHD) undergo surgery in 
the first months of life [1, 2]. Despite high survival rates, many of the 
surviving children can suffer from long-term neurodevelopmental deficits 
[3 6], as a result of white matter lesions following hypoxic or ischemic 
events [2, 3, 7, 8]. To maximize outcomes, the treating team pursue 
adequate oxygen delivery during the entire perioperative period. Cerebral 
perfusion can be monitored with near-infrared spectroscopy (NIRS), which 
continuously monitors regional cerebral tissue oxygen saturation (SctO2) in 
the frontal lobe [9, 10]. 

Perioperative reduced SctO2 is associated with longer length of stay (LOS) 
in the pediatric intensive care unit (PICU), longer duration of mechanical 
ventilation and increased risk of major post-operative complications and 
mortality [11 16]. It remains unclear whether reduced SctO2 is also 
associated with long-term neurocognitive deficits [14]. Several studies have 
been performed to address this question, but with contradictory results, 
due to the limited number of the patients enrolled and the lack of a uniform 
protocol to treat non-optimal SctO2 [14].  

In this study, we used a large single-center dataset to investigate the 
association between SctO2 in pediatric patients after surgery for CHD and 
total IQ at 2-years follow-up. The associations were analyzed with Bayesian 
inference, which allows accounting for uncertainty in parameter estimates.  

 

3.2   MATERIAL AND METHODS 

3.2.1   Study design

This study includes children with CHD admitted in the PICU of the 
University Hospitals Leuven, Belgium, between 2012 and 2015. It derives 
from a protocol amendment to a blinded prospective observational study to 
investigate the independent association of continuous SctO2 measurements 
in children admitted after congenital cardiac surgery, on organ failure, 
PICU and hospital outcomes [13, 17]. Seventy-nine (91%)  of the children 
included in this study were also included in the PEPaNIC trial [18]. 

The protocol of the study was pre-registered (ClinicalTrials.gov: 
NCT01706497). Both the original study and the amendment obtained 
ethical approval of the ethics committee research UZ / KU Leuven (EC 
research). 



 

50   | CHAPTER 3 
  

3.2.2   Participants 

Pediatric patients younger than 12 years of age, admitted to the PICU of the 
University Hospitals Leuven, Belgium, who underwent corrective or 
palliative cardiac surgery for a congenital heart defect, were eligible for the 
study. A complete list of the cardiac surgery procedures amenable for 
inclusion is reported in Appendix 3.A.1. The enrolled children had to be 
mechanically ventilated upon PICU admission, have an arterial catheter in 
place, and have an expected PICU length of stay longer than 24 hours. 
Patients with actual or suspected brain damage, e.g. children who had 
cardiopulmonary resuscitation, severe traumatic brain injury or chronic 
neuropathy, were excluded from the study. Additional reasons for exclusion 
were the presence of clinical or physiologic conditions that prevented the 

r 
admissions to PICU before the long-term follow-up. Baseline 
characteristics including age, gender, educational level of the parents (as 
described in Appendix 3.A.2), severity of illness (Pediatric Index of 
Mortality 3 (PIM3) score), presence of cyanosis before and after surgery, 
and predefined syndrome (as described in Appendix 3.A.3) were recorded 
upon PICU admission. The nutrition strategy (early or late initiation of 
parenteral nutrition, as described in Appendix 3.A.4) was recorded. Surgery 
information such as the Risk Adjustment for Congenital Heart Surgery 1 
(RACHS-1) score, whether the child underwent cardiopulmonary bypass 
(CPB) or deep hypothermic circulatory arrest (DHCA) and duration of CPB 
were recoded. 

3.2.3   Cerebral NIRS Monitoring 

SctO2 was monitored continuously using the FORESIGHT cerebral 
oximeter (CAS Medical Systems, Branford, CT. The unit of measurement of 
SctO2 is in %). The attending bedside clinicians did not have access to the 
NIRS data in order not to influence the independent predictive value of the 
signal. For that purpose, the monitor screens were blinded with a sealed 
screen cover. Monitoring data were stored in the Patient Data Management 
System (MetaVision; iMD-Soft, Needham, MA), with a minute-by-minute 
time resolution. The signals were assessed through visual inspection by an 

-
signal was absent or presented clear artifacts for more than 50% of the 
monitoring time or if it was shorter than 2 hours. 
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3.2.4   Neurocognitive outcomes 
Total IQ of the included children was assessed 2-years after PICU 
admission by trained psychologists with the Wechsler Intelligence Quotient 
(IQ) tests [19, 20]. Namely, the WPPSI-III-NL [19] was used for children 
aged between 2.5 years and 5 years and 11 months, while the Wechsler 
Intelligence Scale for Children (WISC-III-NL) [20] was used for children 
aged between 6 years and 16 years and 11 months. Seventy-nine of the 
included children were assessed in the framework of the PEPaNIC study 
[18], see Appendix 3.A.5-3.A.6. The children were assessed at the hospital 
or at home. The second option was offered to the parents or caregivers not 
able or not willing to travel to the hospital.  

3.2.5   SctO2 predictors 

The SctO2 traces obtained from the left and right electrodes were averaged. 
Obvious artifacts (SctO2 values below 20%) were removed and single 
missing values were imputed through linear interpolation. Desaturation 
was defined as SctO2 below 65%. Mean SctO2 and dose of desaturation were 
computed from the continuous SctO2 signal as possible predictors of lower 
total IQ at 2-years follow-up [13, 15, 16]. The dose of desaturation combines 
the intensity and the duration of SctO2 < 65% (unit of measurement in 
%·minutes), a detailed description of the computation method is included 
in Appendix 3.A.7. An example of dose of desaturation is visualized in 
Figure 3.1 with the dark-grey area between the signal and the grey dashed 
line, which indicates the 65% desaturation threshold. The SctO2 predictors 
were extracted from the beginning of the monitoring up to the first 12 hours 
and up to the first 24 hours of SctO2 monitoring. To be included, children 
had to have at least 2 hours of continuous SctO2 monitoring, to account for 
the variation in duration of the SctO2 recordings the dose was computed as 
percentage. 

Children who experienced prolonged hyperoxia (SctO2 > 85% for more than 
10% of the entire monitoring time) were excluded from the analysis. 
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Figure 3.1 Sequences of SctO2 recordings, first 12 hours of monitoring time. Signal 

-grey area between the 
signal and the grey dashed line which indicates the 65% desaturation threshold. 
According to the enthusiastic prior, there is an 80% probability that the dose of 
desaturation of signal B results in a loss of 4 to 15 IQ points as compared with signal 
A. Similarly, there is an 80% probability that the mean SctO2 of signal B results in 
2.8 to 7.4 IQ points lower total IQ than signal A 2-years after pediatric intensive care 
medicine admission. 

3.2.6   Statistical analysis 

The independent association between SctO2 predictors and total IQ was 
investigated through Bayesian multivariable linear regression models. In 

studies or common knowledge) with the information provided by the 
analyzed data. 

Three models with different types of prior probability distributions for the 
SctO2 predictors under analysis were built: a) neutral prior distribution: it 
is a non-informative prior, assumes no association between the SctO2 
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predictors and outcomes; b) enthusiastic prior distribution: it assumes that 
desaturation is associated with lower total IQ; c) skeptical prior 
distribution: it assumes that desaturation is associated with higher total IQ. 
The standard deviations of the skeptical and enthusiastic priors, which 
quantify the uncertainty of the parameter, were set to respectively twice and 
half their prior most likely value.  

In Bayesian statistics, the credible interval of the posterior distribution 
mate belongs with 

a certain probability. In this study, the 80% credible interval was used.  

The model was adjusted for co-factors that have been shown to affect 
neurocognitive outcomes in previous studies, namely: age, nutrition 
strategy, presence of syndrome, presence of cyanosis after surgery and 
PIM3 score [18, 21 27]. The model was adjusted for nutrition strategy since 
part of the included children were also included in the PEPaNIC trial [18], 
which aimed at investigating the effect of early versus late administration 
of parenteral nutrition on the short and long-term outcomes of the children 
involved. Detailed information on the principles and construction of the 
Bayesian model, including informative priors set for the presence of 
syndrome and presence of cyanosis, are reported in Appendix 3.A.8. 

Results of the Bayesian model were compared to a frequentist multivariable 
linear regression model (traditional statistical method), adjusted for the 
same co-factors of the Bayesian model. Statistical significance was set at a 
p-value of 0.05. 

A sensitivity analysis for the definition of desaturation was performed, 
using as desaturation thresholds 60% and 55%. Moreover, two sensitivity 
analyses were performed on the effect of additional adjusting factors. The 
multivariable linear model was additionally adjusted for the educational 
level of the parents and, in a separate analysis, for the duration of CPB. The 
analyses were limited to the subsets of patients that had the required 
information. In addition, an interaction effect analysis was performed to 
investigate the effect of presence of cyanosis after surgery on SctO2 mean 
and dose of desaturation. 

Ordinal and continuous variables were reported using mean and SD for 
normal distributions and using median and 25th-75th interquartile (IQR) 
range for non-normal distributions.  
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Analyses were performed using Python version 2.7 (Python Software 
Foundation, http://www.python.org), Scipy version 0.19 
(https://www.scipy.org), and Pymc3 version 3.5 (https://docs.pymc.io). 

 

3.3   RESULTS 

3.3.1   Study population 

Three hundred children were recruited for the study. Of the enrolled 
patients, 78 patients were lost at follow-up, of the remaining 222 patients, 
126 patients had low-quality NIRS and 9 died. Eighty-seven patients were 
included in the analysis, see flow diagram for patient inclusion in Figure 
3.2.  

Table 3.1 reports baseline demographics and clinical characteristics in 
PICU of the children included in the study. At PICU admission, the median 
(IQR) age of the children was 4 (1 to 13) months. The median (IQR) PIM3 
was -3.37 (-3.93 to -2.67). A syndromic diagnosis was present in 8 (9%) of 
patients, and 27 (31%) patients had presence of cyanosis after surgery. 
Parenteral nutrition was withheld in the first week of PICU stay in 43 (49%) 
patients. Children had a mean (SD) 2-years follow-up total IQ of 91.9 (13.7). 
The mean SctO2 for both the first 12 hours and 24 hours of monitoring time 
was equal to a mean (SD) of 71 (7) %, while the dose of desaturation was 
equal to a median (IQR) of 0.42 (0 to 53) %·minutes and 0.64 (0 to 49) 

respectively.  

 
Figure 3.2 Flow diagram for study participants inclusion. 
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Table 3.1 Baseline demographics, clinical characteristics and outcomes of 
participating children 

CHARACTERISTICS 
DESCRIPTIVE 

STATISTICS 
N=87 

DEMOGRAPHICS  

  Age (months), median (IQR) 4 (1 to 13) 

  Gender (male), n (%) 56 (64) 

EDUCATIONAL LEVEL OF THE PARENTS a  

  Level 1, n (%) 3 (3) 

  Level 1.5, n (%) 7 (8) 

  Level 2, n (%) 19 (22) 

  Level 2.5, n (%) 20 (23) 

  Level 3, n (%) 27 (31) 

  Unknown, n (%) 11 (13) 

CLINICAL SITUATION AT ADMISSION  

  PIM3 score, median (IQR) 
-3.34 (-3.93 to 

-2.67) 
  PIM3 probability of death (%), median (IQR) 3 (2 to 6) 

  Patients with syndrome, n (%) 8 (9) 

  Children with cyanosis before surgery, n (%) 54 (62) 

SURGERY  

  RACHS-1 score, median (IQR) 2 (2 to 3) 

  Patients that underwent CPB, n (%) 78 (89) 

  Patients that underwent DHCA, n (%) 3 (4) 

  CPB duration b (minutes), median (IQR) 77 (58 to 109) 

POSTOPERATIVE CLINICAL SITUATION  

  Children with persistent cyanosis after surgery, n (%) 27 (31) 

  Nutrition strategy (late parenteral nutrition), n (%) 43 (49) 

  Duration of SctO2 monitoring (hours), median (IQR) 16 (9 to 28) 

PICU LENGTH OF STAY (DAYS), MEAN (SD) 7 (10)  

TOTAL IQ, MEAN (IQR) 91.9 (13.7) 
SctO2 FEATURES, FIRST 12 HOURS OF 
MONITORING 

 

  SctO2 mean (%), mean (SD) 71 (7) 
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  SctO2 dose of desaturation (%·minutes), median 
(IQR) 

0.42 (0 to 53) 

SctO2 FEATURES, FIRST 24 HOURS OF 
MONITORING 

 

  SctO2 mean (%), mean (SD) 71 (7) 
  SctO2 dose of desaturation (%·minutes), median 
(IQR) 

0.64 (0 to 49) 

 

Legend Table 3.1: PIM3 = Pediatric Index of Mortality 3. RACHS-1 = Risk 
Adjustment for Congenital Heart Surgery 1. CPB = cardiopulmonary bypass. 
DHCA = deep hypothermic circulatory arrest. PICU= Pediatric Intensive Care 
Unit. 

a the educational level of the parents was computed as the mean of the level of the 
maternal and paternal educational levels. The single score is based on a 3-point 
scale (1 is low, 2 is middle, and 3 is high; see Appendix 3.A.2). 

b data available only for children that underwent CPB, the statistic is computed on 
this subset of children 

 

3.3.2   Association between SctO2 predictors and 2-year neurocognitive 
development 

Bayesian analysis using neutral, skeptical and enthusiastic priors provided 
consistent results. In fact in each analysis an increased dose of SctO2 
desaturation and a reduced mean SctO2 during the first 12 and 24 hours of 
SctO2 monitoring, independently increased the probability of lower total IQ 
at 2-years follow-up, results are reported in Table 3.2 as posterior 
estimates [80% credible interval]. The credible interval indicates the range 
of 
probability. In addition, Table 3.2 reports the probability that the posterior 

(or strictly positive). An increased dose of 
SctO2 desaturation during the first 12 hours of monitoring resulted in a loss 
of IQ points at 2-years follow-up with a 90%, 90% and 97.5% probability, 
respectively, for the skeptical, neutral and enthusiastic pr
estimates [80% credible interval] equal to -0.007 [-0.015 to 0.000], -0.009 
[-0.016 to -0.001] and -0.011 [-0.017 to -0.005], respectively). The 
corresponding results from the frequentist approach (traditional statistical 
method) did not s
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-0.009 [-0.021 to 0.003], R2: 0.19, p-value: 
0.14). Reduced mean SctO2 during the first 12 hours of monitoring resulted 
in lower total IQ at 2-years follow-up with a 90%, 90% and 97.5% 
probability for the skeptical, neutral and enthusiastic priors, respectively 

0.412] , 0.227 [0.037 to 0.412] and 0.300 [0.166 to 0.436], respectively). A 
representation of the priors and posterior probability distributions for the 
mean SctO2 is shown in Figure 3.3. The corresponding results from the 

estimates [CI] per % increase equal to 0.36 [-0.084 to 0.811], R2: 0.20, p-
value: 0.11). Similar results were obtained when taking into account the 
first 24 hours of monitoring (Table 3.2). Figure 3.1 shows an example of 
SctO2 episodes associated with reduced neurocognitive outcomes. 
According to the enthusiastic prior, there is an 80% probability that the 
dose of desaturation of signal B (Figure 3.1) results in a loss of 4 to 15 IQ 
points as compared with signal A (Figure 3.1). Similarly, there is an 80% 
probability that the mean SctO2 of signal B (Figure 3.1) results in 2.8 to 7.4 
IQ points lower total IQ than signal A (Figure 3.1) 2-years after PICU 
admission. Additional examples of SctO2 episodes associated with reduced 

estimates and representation of prior and posterior distributions for all co-
variates are reported in Appendix 3.A.10. 

Sensitivity analyses for the definition of desaturation provided consistent 
results with the previous analyses, see Appendix 3.A.11. Similarly, 
sensitivity analyses on the effect of additional adjusting factors to the 
multivariable linear model provided consistent results, see Appendix 
3.A.12. No interaction effect was observed between presence of cyanosis, 
mean SctO2 and desaturation, see Appendix 3.A.13. 
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Figure 3.3 
distribution of the skeptical, neutral and enthusiastic priors of the multivariable 
Bayesian model on the relation between mean SctO2 and total IQ. Only the 

e mean SctO2 (first 12 hours of monitoring time) 
are shown. 

 

 



59 



 

60   | CHAPTER 3 
  

3.4   DISCUSSION 

While the survival of pediatric patients after cardiac surgery has improved 
over the last decades [28], a significant proportion of them still suffers from 
neurocognitive impairments [6]. As a result, vast attention has been given 
to identifying those factors, related to or independent from the clinical 
practice, which could affect the neurocognitive development of these 
children. We used Bayesian statistics to analyze the association between 
SctO2 desaturation and mean SctO2 and total IQ, 2-years after PICU 
admission.  

In this study, increased dose of SctO2 desaturation and lower mean SctO2 
in the first 12 and 24 hours of monitoring, independently increased the 
probability of having a lower total IQ 2-years after PICU admission. These 
findings are in line with previous studies that showed high vulnerability of 
the immature brain to prolonged periods of cerebral desaturation [2, 3, 7, 
13, 29 31].  

Validated critical thresholds for harmful cerebral SctO2 are lacking. In 
literature desaturation is heterogeneously defined, with thresholds that 
range from 45% to 65% [29, 30, 32 34]. Although relatively high, the 65% 
threshold used in this study permitted to identify periods of desaturation of 
which dose independently increased the chances of lower total IQ at 2-years 
follow-up. Sensitivity analyses and interaction effect analysis confirmed the 
robustness of the results. The results may indicate that impaired brain 
oxygenation already occurs at higher oxygen saturation thresholds.  

Adoption of skeptical, neutral and enthusiastic priors had almost no effect 
 but it rather affected the level of certainty of 

the estimates, as shown by the standard deviations of the probability 
distributions in Figure 3.3. Hence, the association between SctO2 predictors 
and total IQ not only results when an a priori association is hypothesized 
(enthusiastic priors) but also when an a priori lack of association (neutral 
priors) or a negative association (skeptical priors) is hypothesized. 

The corresponding frequentist approach did not provide statistically 
significant results, this is likely due to a lack of statistical power. However, 
it is worth to observe that: first, Bayesian and frequentist analyses provide 

the Bayesian model is always included in the 95% confidence interval 
resulting from the frequentist model.  
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Due to the limited size of the dataset and the data distribution, this study 
uniquely focused on the deleterious effects of desaturation on the 
developing brain. However, no observations can be made on the 
harmfulness of hyperoxia, of which long-term consequences should be 
further investigated in future studies. 

It remains unclear whether SctO2 desaturation and lower mean SctO2 are 
similarly associated with neurocognitive outcomes when evaluated at later 
times points, for instance at 4-years or 10-years follow-up. In addition, 
although these results have no therapeutic implications, they may represent 
a foundation for future randomized clinical trials (RCT). The target of a 
possible RCT may be the maintenance of SctO2 between 65% and the 
current SctO2 upper range supported by literature (around 85%).  

This study has some limitations. First, due to the single-center design of the 
data set, the results may not be generalizable and require external 
validation in a larger prospective cohort. Second, this is an observational 
study of prospectively collected data. Hence, only associations, and not 
causality, are shown by the results. Third, the SctO2 was quantified with 
NIRS, which monitors the oxygen saturation of a regional area of the frontal 
lobe. In addition, the trace was obtained by averaging recordings from the 
right and left electrode. Therefore, considerations on the perfusion status 
of other areas of the brain outside the NIRS optical field or of one specific 
hemisphere cannot be made. Fourth, in this study we only focus on the 
cerebral oximetry during the first 12 and 24 hours after surgery, but brain 
damage could have been occurred at other moments in time 
(preoperatively, perioperatively or late postoperatively) and in other areas 
of the brain. Fifth, readings of the NIRS oximeter may vary among brands. 
Sixth, clinical or pathological causes of potentially harmful doses of SctO2 
desaturation were not investigated, but they should be explored in a future 
randomized prospective study. Seventh, given the reduced size of the 
dataset, desaturation was defined by using a cut off of 65% also for children 
with cyanosis, for whom a lower threshold might be more appropriate. 
Eight, the multivariable linear regression model was not adjusted for the 
duration of PICU stay. We acknowledge that the duration of PICU stay has 
been previously associated with poor neurodevelopment and hence it might 
play a role in explaining the long-term outcomes of children with CHD. 
However, it was excluded from the list of adjusting factors given the limited 
size of the dataset and given that it resulted highly correlated with the PIM3 
score. Last, although multiple confounders were taken into account when 
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performing the analyses, and although sensitivity analyses on additional 
adjusting factors provided consistent results, we cannot exclude the 
eventuality of other factors that affect outcomes but were not included in 
the analysis. 

Despite these limitations, this represents the first study that analyzes the 
association between SctO2, measured by NIRS, and total IQ at 2-years 
follow-up in a large cohort of pediatric patients after cardiac surgery. A 
strength of this study is the exclusion of treatment bias, as the NIRS 
monitor was blinded to clinicians. Moreover, given the prospective design, 
the study could count on detailed data collection.  

 

3.5   CONCLUSION 

In critically ill children admitted to the PICU after congenital heart surgery, 
increased dose of desaturation, defined as the combination of time and 
intensity of SctO2<65%, and lower mean SctO2 in the first 12 hours and 24 
hours of monitoring time independently increased the probability of a lower 
total IQ at 2-years follow-up. Whether interventions to prevent 
desaturation and reduced mean SctO2 would result in improved outcomes 
remains to be investigated.  
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3.A   APPENDIX 
3.A.1   Cardiac surgery procedures amenable for inclusion 

Cardiac surgery procedures which were considered amenable for inclusion 
are reported below: 

 Norwood procedure 
 Glenn procedure 
 Damus Kaye Stansel procedure 
 Systemic-to-pulmonary artery shunt 
 Pulmonary artery banding 
 Atrial Septal Defect closure 
 Patent Foramen Ovale repair  or closure 
 Widening of the supravalvular aorta 
 Arterial switch operation 
 Tricuspid valve repair 
 Mitral Valve Repair 
 Patch closure of sinus venosus 
 Coarctatio of the aorta 
 Surgical correction for congenital heart defects such as: vascular 

ring, ventricular septal defect, pulmonary venous connection, 
double-chambered right ventricle, troncus arteriosus type 1, total 
anomalous pulmonary venous return, tetralogy of Fallot, 
interrupted aortic arch, univentricular heart, Fontan procedure, 
Subaortic stenosis 

 

3.A.2   Definition of educational level of parents 

The education level is the average of the paternal and maternal educational 
level, and calculated based upon the 3-point scale subdivisions as made by 
the Algemene Directie Statistiek (Belgium; statbel.fgov.be/nl/) and the 
Centraal Bureau voor de Statistiek (The Netherlands; statline.cbs.nl): Low 
(=1), middle (=2) and high (=3) educational level. 
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3.A.3   Definition of syndrome  

The presence of a syndrome was defined as an a priori clinical condition 
that could affect neurocognitive development [18]. It included all adverse 
clinical conditions that fall under the following categories: 

 Genetically confirmed syndrome or pathogenic chromosomal 
abnormality 

 Clearly defined syndrome, association or malformation without 
(identified) genetic aberration 

 Polymalformative syndrome of unknown etiology 
 Clear auditory or visual impairment without specified syndrome 
 Congenital hypothyroidism due to thyroid agenesis 
 Brain tumour or tumour with intracranial metastatic disease 
 Pedopsychiatric disorder (e.g. autism spectrum disorder, 

(treatment for) attention deficit hyperactivity disorder) 
 Severe medical disorder, not primarily neurologic, but suspected 

to alter psychomotor and/or mental performance 
 Severe neonatal problem (e.g. severe asphyxia) 
 Severe craniocerebral trauma or near-drowning 
 Severe infectious encephalitis or drug-induced encephalopathy 
 Infectious meningitis, encephalitis or Guillain-Barré 
 Resuscitation and/or need for extracorporeal membrane 

oxygenation prior to inclusion 

 Severe convulsions or stroke prior to inclusion 

 

3.A.4   Definition of early and late parenteral nutrition 

Early parenteral nutrition (PN) implied initiation of supplemental 
parenteral nutrition within the first 24 hours after admission to the PICU 
when enteral nutrition alone was insufficient to reach the caloric target. 
Late parenteral nutrition is defined as the withholding of parenteral 
nutrition in the first week of intensive care when enteral nutrition was 
insufficient to reach the caloric target. Although late parenteral nutrition 
might imply lower caloric intake, it has been shown to be clinically superior 
as compared with early parenteral nutrition in terms of incidence of new 
infections, time to recovery and long-term neurocognitive outcomes [18, 
35]. 
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3.A.5   Description of the medical assessment 

Neurocognitive outcomes of part of the included children were assessed in 
the context of the PEPaNIC study. In the PEPaNIC study, a follow-up visit 
was performed by trained clinicians and psychologists and scheduled 2 
years after the admission of the child at the PICU.  

For this study, only the total IQ was analysed as indicator of long-term 
neurocognitive outcomes. The remaining children (children that were not 
originally part of the PEPaNIC study) were contacted by phone to schedule 
the follow-up specifically for this study. Follow-up protocol strictly followed 
the neurocognitive assessment protocol of the PEPaNIC study. 

 

3.A.6   Description of the total IQ tests 

General intellectual abilities were assessed with use of age-appropriate 
versions of the Wechsler Intelligence Quotient (IQ) tests. In detail, the 
Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III-NL)[19] 
was used for children aged 2·5 years  5 years 11 months (one version for 
age range 2 years 6 months  3 years 11 months, and another version for 
age range 4 years  5 years 11 months), the Wechsler Intelligence Scale for 
Children (WISC-III-NL) [20] was used for older children.  

 
3.A.7   Description of the method of calculation of dose of desaturation 

The total dose of desaturation experienced by each child was computed as 
follows: 

 

 

 

Where: 

 threshold:   65% (desaturation threshold) 
 s:   SctO2 signal, s(t) refers to the value of the signal at time t 
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 tmax:   720 minutes (12 hours) or 1440 minutes (24 hours) , it 
refers to the maximum duration of the window from which the 
total dose of SctO2 desaturation is extracted 

 

3.A.8   Construction of the Bayesian model 

The Bayesian model was built by using the No-U-Turn Sampler (NUTS). All 
non-informative priors were given a normal distribution, with a mean equal 
to 0 and a SD equal to 2 times the SD of the variable. 

Informative priors were set for the variables syndrome and cyanotic 
cardiopathy. In detail, we assumed that the presence of syndrome would 
worsen the neurocognitive outcomes of the child by 5% [21 25, 36, 37]. 
Similarly, we assumed that the presence of cyanotic cardiopathy would 
worsen the neurocognitive outcomes of the child by  1% [26, 27]. Given that 
the mean total IQ at 2-years follow-up of children admitted in the PICU is 
90.6 [18], the mean value and standard deviation of the priors set for of the 
syndrome and cyanotic cardiopathy are reported in  Table 3.A.2. 

Table 3.A.2   Parameters of the prior distributions for syndrome and 
cyanotic cardiopathy 

COVARIATE MEAN VALUE SD 

Syndrome -4.53 10 

Cyanotic cardiopathy -0.91 10 
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3.A.9   Examples of SctO2 sequences in the first 12 hours of PICU stay 

Examples of SctO2 sequences in the first 12 hours of PICU stay, see Figure 
3.A.1. For each signal, it is indicated the average loss of IQ points that is 
associated with the signal desaturation. 

 

Figure 3.A.1   Sequences of SctO2 recordings with different doses of desaturation, 
first 12 hours of monitoring time. The desaturation dose below 65% (unit of 

grey dashed line which indicates the 65% desaturation threshold. Signal A) 
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points associated with its SctO2 desaturation is indicated in respect with signal A), 
which shows no desaturation. For example, the desaturation dose of signal B) is 
associated with a loss of 4 to 15 IQ points than signal A). Similarly, the desaturation 
dose of signal C) is associated with a loss of 2 to 7 IQ points than signal A). 

 

3.A.10   -variates and representation of the 
prior and posterior distributions 

Results of the Bayesian linear regression model are reported for all co-

strictly negative/positive prior. For simplicity, and given that Bayesian 
analysis using neutral, skeptical and enthusiastic priors provided consistent 
results, only the results of the neutral prior, for desaturation and mean 
SctO2 of the first 12 hours of monitoring time are reported, see Table 3.A.2 
and Table 3.A.3 respectively. Visual representation of the prior and 
posterior distributions of all covariates is provided uniquely for the 
Bayesian model on mean SctO2, Figure 3.A.2 to Figure 3.A.8. 

 

Table 3.A.2   P -variates. Bayesian linear 
regression model for SctO2 desaturation 

Covariates 
 

[80% credible interval] 

Probability that the 

strictly  
negative(-)/positive(+) 

Desaturation -0.009 [-0.02 to -0.001] 90% (-) 
Age -0.04 [-0.11 to 0.02] 75% (-) 

Syndrome -8.73 [-15.24 to -3.15] 95% (-) 

Nutrition strategy§ -5.56 [-9.07 to -2.06] 95% (-) 

Cyanotic cardiopathy -3.26 [-7.52 to 1.43] 80% (-) 

PIM3 -1.42 [-3.61 to 0.73] 70% (-) 

Intercept 93.00 [1.00 to 85.00] 97.5% (+) 
     § Late PN vs early PN 
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Table 3.A.3   -variates. Bayesian linear 
regression model for mean SctO2 

Covariates 
 

[80% credible interval] 

Probability that the 

strictly  
negative(-)/positive(+) 

Mean SctO2 0.23 [0.047 to 0.41] 90% (+) 

Age -0.04 [-0.10 to 0.02] 75% (-) 

Syndrome -9.08 [-15.32 to -3.23] 95% (-) 

Nutrition strategy§ -5.32 [-8.98 to -1.72] 90% (+) 

Cyanotic cardiopathy -3.56 [-7.93 to 0.58] 85% (-) 

PIM3 -1.39 [-3.58 to 0.86] 80% (-) 

Intercept 77.35 [62.37 to 91.92] 97.5% (+) 
     § Late PN vs early PN 

 

 

 

Figure 3.A.2 
distribution for the covariate mean SctO2 of the multivariable Bayesian model on 
the relation between mean SctO2 and total IQ (neutral prior, first 12 hours of 
monitoring time).  
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Figure 3.A.3   
distribution for the covariate age of the multivariable Bayesian model on the relation 
between mean SctO2 and total IQ (neutral prior, first 12 hours of monitoring time). 

ormative, as it is shown by the flat probability distribution. 

 

Figure 3.A.4 
distribution for the covariate presence of syndrome of the multivariable Bayesian 
model on the relation between mean SctO2 and total IQ (neutral prior, first 12 hours 
of monitoring time).  
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Figure 3.A.5   
distribution for the covariate nutritional strategy of the multivariable Bayesian 
model on the relation between mean SctO2 and total IQ (neutral prior, first 12 hours 
of monitoring time). 

 

Figure 3.A.6   
distribution for the covariate presence of cyanotic cardiopathy of the multivariable 
Bayesian model on the relation between mean SctO2 and total IQ (neutral prior, first 
12 hours of monitoring time). 
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Figure 3.A.7   
distribution for the covariate nutritional strategy of the multivariable Bayesian 
model on the relation between mean SctO2 and total IQ (neutral prior, first 12 hours 
of monitoring time). 

 

Figure 3.A.8   
distribution for the intercept of the multivariable Bayesian model on the relation 
between mean SctO2 and total IQ (neutral prior, first 12 hours of monitoring time). 
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3.A.11   Sensitivity analysis on the definition of desaturation 

Given that Bayesian analyses using neutral, skeptical and enthusiastic 
priors provided consistent results, sensitivity analyses for different 
definitions of desaturation were performed only with the neutral prior. 
Desaturation was defined as SctO2 below the thresholds of 60% and 55%. 
The results of the sensitivity analyses confirmed the robustness of the 
results of the main analysis, see Table 3.A.4 and Table 3.A.5 for 
desaturation defined as SctO2 below 60% and 55% respectively.  

 

Table 3.A.4   Results of a sensitivity analysis with desaturation defined 
as SctO2 below 60% 

  
DESATURATION DOSE (SctO2 < 60%) 

   
[80% credible interval] 

Probability that the 

strictly  
negative(-)/positive(+) 

First 12-hours of SctO2 
monitoring -0.09 [-0.16 to -0.03] 95% (-) 

First 24-hours of SctO2 

monitoring 
-0.02 [-0.067 to 0.025] 85% (-) 

 

 

Table 3.A.5   Results of a sensitivity analysis with desaturation defined as 
SctO2 below 55% 

  
DESATURATION DOSE (SctO2 < 55%) 

   
[80% credible interval] 

Probability that the 

strictly  
negative(-)/positive(+) 

First 12-hours of SctO2 
monitoring -0.052 [-0.09 to -0.01] 95% (-) 

First 24-hours of SctO2 

monitoring 
-0.033 [-0.068 to 0.003] 85% (-) 
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3.A.12   Sensitivity analyses on the effect of additional adjusting factors 

Sensitivity analyses were performed on the effect of additional adjusting 
factors on the results of the multivariable linear regression model. The 
multivariable linear regression model of the main analysis was additionally 
adjusted for the educational status of the parents and, in a separate 
analysis, for the duration of the cardiopulmonary bypass. The analyses were 
performed in two subsets of patients that had the required information, 
namely, in a subset of 76 patients for the additional adjusting factor 

remained consistent with the main analysis. In particular, Table 3.A.6 
reports the results of the linear regression model further adjusted for the 
educational status of the parents, while Table 3.A.7 reports the results of 
the linear regression model further adjusted for the duration of 
cardiopulmonary bypass. 



76 
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3.A.13   Interaction analysis 

No association was found between presence of cyanosis after surgery and 
dose of desaturation (p=0.47 and p=0.22 respectively for the first 12 hours 
and 24 hours of monitoring). Presence of cyanosis after surgery was 
associated with lower mean SctO2 during the first 12 hours and 24 hours of 
monitoring time, p-values of respectively p < 0.001 and p < 0.001. 
However, no interaction effect was found between the presence of cyanosis 
after surgery and mean SctO2 in relation with long-term total IQ. Results of 

hours). 

Table 3.A.8  Results of the interaction term analysis for mean SctO2 and 
total IQ 

Covariates 
Posterior estimates 

[80% credible interval] 

Probability that the 

strictly  
negative(-)/positive(+) 

Mean SctO2 0.23 [0.13 to 0.36] 90% (+) 

Age -0.04 [-0.08 to 0.01] 75% (-) 

Syndrome -8.92 [-12.86 to -4.75] 95% (-) 

Nutrition strategy -5.33 [-7.68 to -2.95] 95% (-) 

Cyanosis after surgery -3.31 [-11.6 to 4.15] 65% (-) 

PIM3 -1.36 [-2.76 to 0.09] 75% (-) 

Mean SctO2 * cyanosis 
after surgery -0.003 [-0.121 to 0.122] 50% (-) 
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ABSTRACT 

PURPOSE:   In patients with aneurysmal subarachnoid hemorrhage 
(aSAH) the burden of intracranial pressure (ICP) and its contribution to 
outcomes remains unclear. In this multicenter study, the independent 

intracranial hypertension and 12-month neurological outcomes was 
investigated. 

METHODS:   Retrospective analysis of multicenter prospectively collected 
data of 98 adult patients with aSAH amendable to treatment. Patients were 
admitted to the Intensive Care Unit of two European centers (Medical 
University of Innsbruck (Austria) and San Gerardo University Hospital of 
Monza (Italy)), from 2009 to 2013. The dose of intracranial hypertension 
was visualized. The obtained visualizations allow to investigate the 
association between intensity and duration of episodes of intracranial 
hypertension and the 12-month neurological outcomes of the patients, 
assessed with the Glasgow Outcome Score. The independent association 
between the cumulative dose of intracranial hypertension and outcome for 
each patient, was investigated using multivariable logistic regression 
models, corrected for age, occurrence of delayed cerebral ischemia and 
Glasgow Coma Scale at admission.  

RESULTS:   The combination of duration and intensity defined the 
tolerance to intracranial hypertension for the 2 cohorts of patients. A semi-
exponential transition divided ICP doses that were associated with better 
outcomes (in blue) with ICP doses associated with worse outcomes (in red). 
In addition, in both cohorts an independent association was found between 
the cumulative time that the patient experienced ICP doses in the red area 
and long-term neurological outcomes. The ICP pressure time burden was a 
stronger predictor of outcomes than the cumulative time spent by the 
patients with an ICP above 20 mmHg. 

CONCLUSIONS:   In two cohorts of patients with aSAH, an association 
between duration and intensity of episodes of elevated ICP and 12-month 
neurological outcomes could be demonstrated and was visualized in a color-
coded plot. 
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4.1   INTRODUCTION 
 

Aneurysmal subarachnoid haemorrhage (aSAH) is a form of stroke that is 
characterized by the extravasation of blood in the subarachnoid space due 
to the rupture of an aneurysm [1, 2].  
In the first days after the initial aneurysm rupture, rebleeding is the most 
concerning risk. Hence, securing the ruptured aneurysm through coiling or 
clipping is done as early as possible. Once the aneurysm is secured, the 
management of the patient is aimed at the prevention or treatment of 
subsequent complications [2], of which delayed cerebral ischemia (DCI) is 
the most prevalent and feared [3]. Increased intracranial pressure (ICP) is 
also a main concern, since it may occur in up to 81% of patients [4, 5]. 
Management guidelines for the treatment of elevated ICP in aSAH are 
mainly based on the recommendations for traumatic brain injury (TBI). As 
in TBI, it is suggested to treat sustained ICP elevations above 20-22 mmHg 
[6, 7]. Guidelines refer to a fixed threshold, despite it was demonstrated 

elevation, better quantifies ICP burden in patients with TBI [8, 9]. The 
association between dose of ICP and long-term neurological outcomes of 
patients with TBI was visualized with the method proposed by Güiza et al. 
[10]. For aSAH, such large epidemiological data on ICP thresholds are 
lacking [11, 12].  

In the present study, we hypothesized that the concept of ICP dose applies 
to patients with aSAH. The association between ICP dose and outcomes was 
visualized by applying the method introduced by Güiza et al [10].  

 

4.2   METHODS 

4.2.1   Dataset and study population 

This retrospective analysis was performed on two prospectively collected 
datasets. The first dataset, which was collected at the Department of 
Neurology, Neurocritical Care Unit of the Medical University of Innsbruck 
(Austria), included data of 46 consecutive patients admitted to the local ICU 
from 2010 to 2016. The second dataset included 52 consecutive patients 
admitted to the local ICU of the San Gerardo University Hospital of Monza 
(Italy) from 2009 to 2013 [5].  
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Figure 4.1 Study flow diagrams for the two cohorts: panel A) Innsbruck cohort
panel B) Monza cohort.

Adult patients (age>18 years old) with aSAH amenable to treatment 
through surgical clipping or endovascular coiling and intraparenchymal 
ICP in place were included in the study. Study flow diagrams are reported 
in Figure 4.1. The policy of the Medical University of Innsbruck expects 
external ventricular drain (EVD) and ICP sensor placement in patients with 
poor clinical status (Hunt and Hess [H&H] score 4-5) at admission or 
neuroworsening in the first 24 hours, or clinical or radiological signs of 
potential increased intracranial pressure. In the San Gerardo University 
Hospital, EVD and ICP sensors are placed in patients deemed to require 
continuous cerebrospinal fluid (CSF) drainage [5]. The sensors are usually 
inserted when the patient has World Federation of Neurosurgical Societies 
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the first 12 hours - 24 hours) after EVD placement. Patients with 
decompressive craniectomy or moribund at ICU admission were excluded 
from the study. The datasets include age, gender, modified Fisher 
(mFisher) score [13], H&H score [14], the WFNS score [15], the Glasgow 
Coma Scale (GCS) before sedation, continuous recordings of ICP and mean 
arterial blood pressure (MABP), indication and time of surgical therapy 
(coiling vs clipping), the amount of CSF drained during ICU stay and 
indications on the occurrence of DCI or re-bleeding. All illness severity 
scores were quantified and collected at admission in the ICU. DCI was 
defined as the development of new focal neurological signs or deterioration 

[16] or neurological deterioration lasting more than 1 hour), or the 
appearance of new infarctions on computed tomography or magnetic 
resonance imaging not attributable to other causes [5]. All patients received 
sedatives and vasopressors. Information about their daily administration 
was included in the datasets as binary variables, detailed information about 
the dose or time of administration could not be retrieved. Clinical 
neurological outcomes were assessed by a trained neurologist and 
quantified with the 12-month Glasgow Outcome Score (GOS) [17]. 

Continuous ICP and MABP signals were measured and collected differently 
for the two centres. In the Innsbruck cohort, the samples were collected 
every second and the values stored in the server of the patient data 
management system (CentricityTM Critical Care, 8.1, SP7, GE, Boston, 
Massachusetts, USA) every 5 minutes. In the Monza cohort, the recordings 
were collected with the Innovian Solution Suite (Draeger Medical) that 
automatically samples continuous monitoring signals with a sampling 
frequency of 150Hz and averages the collected values across 1 minute.  

To allow simultaneous ICP monitoring and CSF drainage, both centres used 
EVD as well as intraparenchymal ICP sensors (Innsbruck: Neurovent-P-
temp, Raumedic®, Helmbrechts, Germany. Monza: Codman Microsensor® 
ICP Transducer, Johnson & Johnson Professional, Inc., USA). The clinical 
management of the patients followed the international American Heart 
Association (AHA) and Neurocritical Care Society (NCS) guidelines during 
the data collection [18, 19]. In both centres, EVD was kept open during the 
monitoring and ICP treated when its value rose above 20 mmHg for more 
than 10-20 minutes. Given that ICP measurements are unreliable when 
acquired from an open EVD, only data from the intraparenchymal probe 
were used for the analysis. 
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The study was approved by the ethics committee of both hospitals. For the 
Innsbruck cohort, written informed consent was obtained from the 
participants or their legal representatives. Need of informed consent was 
waived for the Monza cohort due to the retrospective nature of the analysis.  

4.2.2   Statistical analysis of the datasets and visualization  

Continuous and ordinal variables with non-normal distribution, such as 
age, mFisher score, GOS, H&H, WFNS and the GCS were analysed by 
computing median, interquartile range [IQR], 25th and 75th percentile, Chi-
Square test for proportion, Mann Whitney U-test and Kolmogorov-Smirnov 
(KS) test. Categorical variables such as the occurrence of DCI or re-bleeding 
were analysed with the Chi-Square test for proportion. Statistical 
significance was set at a p value below 0.05. Effect size were computed with 

A) [20] for continuous and ordinal variables 
and with odds ratios (OR) for categorical variables.  

A ranges from 0 and 1, it reports the probability 
that a value of one group is greater than the value of another group. As such, 
an A equal to 0.5 indicates that the two groups are stochastically equal, i.e. 
there is no effect. An A equal to 1 indicates that every value of the first group 
is higher than the values of the second group, and vice versa for an A equal 
to 0. Therefore, an A of 0 or 1 equally indicate a strong effect size. 
The average percentage of monitoring time spent by each patient with an 
ICP above 20 mmHg and with a MABP above 80 mmHg were computed for 
the entire monitoring time and per day of monitoring.  

The independent association between dose of ICP and neurological 
outcomes of patients with aSAH was investigated with the method of Güiza 
et al. [10]. It results in a 2D color-coded plot representing the correlation 
between the frequency of occurrence of ICP episodes of a certain dose 
(duration per intensity) and the severity of long-term neurological 
outcome, quantified with the 12-month GOS. Doses of ICP that occur more 
frequently in patients that present poor outcomes are represented in red, 
while doses of ICP which occur more frequently in patients with good 
outcomes are represented in blue. Doses of ICP that similarly occur in 
patients with good and poor long-term outcomes are represented in green 
and yellow (transition colors between red and blue). In the text, we will call 

regions associated with 
good GOS (blue region) and poor GOS (red region). 
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The 2-D color-coded plots were extracted for each center, using the entire 
cohort. To account for known confounders, the plots were re-extracted after 
excluding patients that had re-bleeding or DCI. 

For each patient, we computed the cumulative percentage of monitoring 
time in which the patient had ICP doses in the red area of the color-coded 
plot, i.e. ICP doses associated with poor outcomes. This measure, which will 

essure-
transition curves of each cohort.  

To further validate the visualization plots, and account for known 
correcting factors, the independent association between the ICP pressure-
time burden and outcomes was evaluated with multivariable logistic 
regression models corrected for age, DCI and GCS. Outcomes were 
dichotomized and defined as good (GOS 4-5) versus poor (GOS 1-3) 
outcomes. The same multivariate models were built substituting the ICP 
pressure-time burden with the percentage of time with ICP above 
20 mmHg. To account for variations in the monitoring time, the same 
analyses were performed by limiting the ICP recordings of the Innsbruck 
cohort to the first week of monitoring time. 

All the analyses were performed separately for the two cohorts given the 
differences in data collection (prospective for the Innsbruck cohort and 
retrospective for the Monza cohort) and in sampling frequencies used by 
the two cohorts. 

All the analyses were computed in Python 3.5.4 (https://www.python.org/) 
and Scipy 0.19.1 (https://www.scipy.org/). 

4.3   RESULTS 

Baseline clinical characteristics and outcomes are shown in Table 4.1. The 
two cohorts do not differ significantly in age, gender, mFisher score, WFNS 
score, GCS or H&H score.  
The percentage of patients that underwent coiling or clipping was 
comparable in the two centers, despite a small effect size (p= 0.13 and 
p = 0.17 respectively, OR = 1.69). Importantly, in the Monza cohort the 
incidence of re-bleeding was significantly higher than in the Innsbruck 
cohort (p = 0.01, OR = 3.02). On the contrary, the incidence of DCI was 
comparable between the datasets (p = 0.30, OR = 0.77).  
The average duration of the monitoring time with intraparenchymal devices 
was 14 days ± 7 days and 5 days ± 2 days for the Innsbruck and Monza 
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cohorts respectively (p<0.001, A = 0.93). During the first monitoring week, 
the patients experienced comparable percentages of cumulative time above 
20 mmHg, equal to 2.4% and 1.6% (p = 0.38, A = 0.52) in Innsbruck and 
Monza, respectively; see Appendix 4.A.1 (Figure 4.A.1). However, the daily 
percentage of cumulative time above 20 mmHg, was significantly higher in 
Monza in the first day of monitoring (p = 0.04, A = 0.40) and significantly 
higher in Innsbruck for days 6 (p = 0.03, A = 0.61) and 7 (p = 0.01, 
A = 0.68); see Appendix 4.A.1 (Figure 4.A.2). Similarly, patients from 
Innsbruck experienced higher daily MABP values for the first 5 days of 
monitoring (p<0.001 and A > 0.9 for days 1 to 4, p = 0.002, A = 0.8 for day 
5, and p = 0.37, A = 0.76 and p = 0.44, A = 0.58 for days 6 and 7 
respectively); see Appendix 4.A.1 (Figure 4.A.3). 
During the first week of ICU stay, the number of days that patients received 
sedatives was significantly higher (p<0.001, A = 0.77) in Innsbruck than in 
Monza with a median [IQR] of 7 [7-7] vs 6 [4-7]. Likewise, the number of 
days that patients received vasopressors was significantly higher 
(p = 0.008, A = 0.69) in Innsbruck than in Monza with a median [IQR] of 
7 [6-7] vs 6 [4-7], see Figure 4.2. 
Lastly, the average amount of CSF that was drained daily over the first week 
of ICU stay was higher in Innsbruck (p<0.001, A = 0.77). Major 
information on the comparison of the post-surgery clinical management of 
patients with aSAH for the centers can be found in Appendix 4.A.2. The 
dichotomized 12-month neurological outcomes were comparable (Chi-
square test of proportion p = 0.53 and p = 0.79 for GOS 1,2,3 and GOS 4,5 
respectively, OR = 0.87).  
 
Table 4.1   Baseline clinical characteristics and outcomes 

VARIABLE INNSBRUCK MONZA p 
EFFECT 

SIZE 

Number of patients 46 52   

Age, median [IQR] 57 [47  67] 57 [50  65] 0.30 0.47a 

Gender, females, n 
(%) 

28 (61) 34 (65) 0.30 1.21b 

mFisher score, 
median [IQR] 

4 [3  4] 4 [4  4] 0.18 
0.99c 

0.46a 

WFNS, median [IQR] 5 [4  5] 5 [4  5] 0.17 
0.90 c 

0.55a 
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H&H, median [IQR] 4 [3  5] 4 [4  5] 0.49 
0.72c 

0.49a 

GCS, median [IQR] 9 [4-13] 7 [5-13] 0.25 
0.21c 

0.53a 

Surgical intervention:    1.69b 

Coiling, n (%) 13 (28) 22 (42) 0.13  

Clipping, n (%) 31 (67) 28 (54) 0.17  

None, n (%) 2 (5) 2 (4) 0.90  

Time between ICU 
admission and 
surgical intervention 
(coil/clipping), days, 
median [IQR] 

0 [0 - 0] 0 [0 - 0] 0.47 0.50a 

DCI, n (%) 17 (37) 16 (31) 0.30 0.77b 

Re-bleeding, n (%) 5 (11) 14 (27) 0.01 3.02b 

Duration of monitoring, 
days, mean (SD) 

14 (7) 5 (2) <0.001 0.93a 

Time ICP>20 mmHg , 
(% of monitoring time) 

2.4 1.6 0.38 0.52a 

Duration of treatment 
with sedatives (first 
week), days, median 
[IQR] 

7 [7-7] 7 [6-7] <0.001 0.77a 

Duration of treatment 
with vasopressors (first 
week), days, median 
[IQR] 

7 [6-7] 6 [4-7] 0.008 0.69a 

Average daily drained 
CSF, mL, mean (SD) 

195 (69) 127 (57) <0.001 0.77a 

12-month GOS:    0.87b 
GOS 1-2-3, n (%) 18 (39) 22 (42) 0.53  

GOS 4-5, n (%) 28 (61) 30 (58) 0.79  

a Effect A for continuous and ordinal 
A are: small = 0.56 < A < 0.64 

and  0.34 < A <  0.44; medium = 0.64 < A <  0.71 and 0.29 <  A < 0.34; large A  and A 
0.29. 
b Effect size were computes with odds ratios (OR) for categorical variables. Common effect size 
indexes for ORs are as follows: small=1.5, medium=2 and large=3. 
cKS p is computed only for the ordinal variables with non-normal distribution. 
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Figure 4.2   Bar plots of the total number of days patients from Innsbruck and 
Monza underwent a specific treatment. In detail: panel A) total number of days 
patients underwent sedatives, panel B) total number of days patients underwent 
vasopressors. Values are shown in terms of percentage. 

 

4.3.1   Visualization of ICP burden 

The color-coded graphs from the two datasets showed a time-intensity-
dependent association between the dose of ICP and neurological outcomes 
at 12 months, as shown in Figure 4.3. The zones associated with good and 
poor outcomes were separated by a semi-exponential transition. The graph 
corresponding to the Innsbruck cohort showed a transition with a gradual 
exponential decrease from a dose of ICP of 10 mmHg for 350 minutes to 15 
mmHg for 10 minutes. The transition for the Monza patients was shifted to 
the left, with a sharper decrease that started from about a dose of 5 mmHg 
for 160 minutes to 15 mmHg for 5 minutes. Patients from Monza did not 
experienced enough episodes of prolonged elevated ICP to compute part of 
the graph, which is indicated with a white region. 

The time-intensity-dependent association between dose of ICP and 12-
month GOS remained when excluding from the analysis patients with re-
bleeding or DCI. Figure 4.4 shows the transition curves of the two centers 
when excluding, or not, patients with rebleeding or DCI from the analysis. 
The transition of the Monza cohort resulted shifted towards higher values 
than the one in Figure 4.3, extending from 5 mmHg for 340 minutes to 15 
mmHg for 15 minutes. 
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Figure 4.4 Comparison of transition curves of the two cohorts. The points of zero 
correlation between ICP doses and GOS compose the transition curve; hence, the 
transition curve indicates the line of transition between blue regions and red regions 
of the color-coded visualization. Panel A) transition curves obtained with the entire 
cohorts. The cohorts included 46 patients and 52 patients for Innsbruck and Monza, 
respectively. Panel B) transition curves obtained from subsets of patients that did 
not have rebleeding or delayed cerebral ischemia. The subsets included 26 patients 
and 28 patients for Innsbruck and Monza, respectively. 

 

4.3.2   Multivariable logistic regression analysis 

For both cohorts, the multivariable analysis showed an independent 
association between the ICP pressure-time burden and the 12-months 
neurological outcomes, OR -4.80, 95% CI -8.26 to -1.32, p = 0.007 and OR 
-5.11, 95% CI -8.38 to -1.84, p = 0.002 for Innsbruck and Monza, 
respectively, see Table 4.2.  

Given that the average duration of monitoring time was different for the 
two centres, an additional analysis was performed for the Innsbruck cohort 
by limiting the recording to the first monitoring week. The independent 
association between the ICP pressure-time burden and neurological 
outcomes remained, p = 0.03, see Appendix 4.A.1 (Table 4.A.1).  
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It is noteworthy that no significant association was found between the 
percentage of monitoring time with ICP above 20 mmHg and neurological 
outcomes for either the Innsbruck (OR -0.03, 95% CI -0.07 to 0.01, p = 
0.12) or Monza cohorts (OR -0.07, 95% CI -0.18 to 0.03, p = 0.18), see Table 
4.3.  

 

Table 4.2.   Multivariable logistic regression analysis with covariate ICP 
pressure-time burden 

INNSBRUCK 

 Variable OR CI p 
Age -0.06 [-0.14 to 0.01] 0.07 
DCI -1.09 [-2.68 to 0.50] 0.18 
GCS 0.15 [-0.03 to 0.33] 0.11 
ICP pressure-time burden -4.80 [-8.26 to -1.32] 0.007 

MONZA 

 Variable OR CI p 
Age -0.04 [-0.12 to 0.03] 0.28 
DCI -0.08 [-1.58 to 1.41] 0.91 
GCS 0.04 [-0.12 to 0.20] 0.62 
ICP pressure-time burden -5.11 [-8.38 to -1.84] 0.002 

 

DCI: delayed cerebral ischemia ; GCS: Glasgow Coma Scale; ICP: intracranial 
pressure 



 

96   | CHAPTER 4 
 

Table 4.3.   Multivariable logistic regression analysis with covariate 
percentage of time with ICP > 20 mmHg 

INNSBRUCK 

Variable OR CI p 

Age -0.03 [-0.09 to 0.02] 0.23 

DCI -0.45 [-1.77 to 0.88] 0.51 

GCS 0.13 [-0.03 to 0.30] 0.11 

Percentage of time with 
ICP >20mmHg 

-0.03 [-0.07 to 0.01] 0.12 

MONZA 

Variable OR CI p 

Age -0.04 [-0.11 to 0.02] 0.19 

DCI -0.80 [-2.17 to 0.56] 0.25 

GCS 0.01 [-0.13 to 0.16] 0.85 

Percentage of time with 
ICP >20mmHg 

-0.07 [-0.18 to 0.03] 0.18 

DCI: delayed cerebral ischemia ; GCS: Glasgow Coma Scale; ICP: intracranial 
pressure 

 

4.4   DISCUSSION 

In patients with aSAH, intracranial hypertension, defined as sustained ICP 
above 20-22 mmHg, is associated with increased mortality and worse 
neurological outcomes [4, 5, 21, 22]. It remains unclear whether the dose of 
ICP, which combines intensity and duration of an event of elevated ICP, is 
similarly associated with worse outcomes. In this study, we used the 
methodology introduced by Güiza et al [10] to investigate the association 
between ICP dose and long-term neurological outcomes of patients with 
aSAH. We found that the combination of intensity and duration defined the 
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tolerance to intracranial hypertension, suggesting that the concept of dose 
of ICP is valid in patients with aSAH. 

In the visualizations, a semi-exponential transition clearly divided episodes 
of ICP associated with good outcomes from episodes associated with poor 
outcomes. Consistently with what has been reported in previous studies [4, 
21, 22], Figure 4.3 shows the strong vulnerability of patients to intracranial 
hypertension. Such vulnerability can be partially explained by the poor 
clinical situation at admission, impaired cerebrovascular autoregulation 
[23] and the elevated age of the patients.  

This study suggests that, in patients with aSAH, the association between 
intracranial hypertension and poor long-term neurological outcomes 
occurs at lower ICP values than what is hypothesized in the guidelines. This 
association towards lower ICP values can be partially explained by the 
continuously open EVD, which automatically results in lower ICP.  

Alternatively, the results may indicate that intracranial hypertension is an 
important surrogate marker of underlying mechanisms, such as global 
brain edema, ischemia, cerebral infarction, hydrocephalus or brain 
metabolic crisis, that eventually lead to neurological deterioration [4]. 

The differences between the curves of the two cohorts could not be 
explained by baseline characteristics, but they might result from 
unaccounted effects of secondary complications such as re-bleeding, DCI, 
CSF dynamics disturbances, hematoma expansion or brain edema, which 
better define outcomes in patients with aSAH [21, 22]. Two supporting facts 
are the different incidence of rebleeding across the two cohorts and the 
increased similarity between the plots of the two centers when excluding 
patients with known secondary complications, see Figure 4.4. Patient 
management may also play a role in the definition of outcomes and hence 
explain the differences in the curves. In this study, minor differences were 
identified in the use of sedatives, vasopressors and amount of daily drained 
CSF. In addition, a small effect size was shown between the most frequent 
surgical procedure of the two centers. The confounding effect of secondary 
complications and treatment strategy is expected, given the complexity and 
heterogeneity of aSAH. In addition, the separate analysis of the two cohorts 
was crucial to identify this confounding effect, which might have been more 
pronounced in the Monza cohort, where the incidence of rebleeding is 
higher. A limitation of the visualization methodology is that it does not 
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allow corrections for confounders. Therefore, multivariable logistic 
regression analyses were used. 

The main finding of this study is the independent association between the 
ICP pressure-time burden and the long-term neurological outcomes in 
aSAH patients. The ICP pressure-time burden was more predictive of long-
term neurological outcomes than the time spent by the patient above the 
fixed threshold of 20 mmHg. The results, in agreement with previous 
studies on TBI [8, 10], suggest that the dose better quantifies the burden of 
intracranial hypertension than the time spent by the patient with an ICP 
above 20 mmHg.  

This study has some limitations. First, it was performed on two cohorts of 
only 46 and 52 patients each, hence the results need to be validated in a 
bigger multicenter dataset. The use of a big multicenter database will be 
crucial to identify a universal ICP visualization curve on which draw general 
clinical conclusions. Second, this study is based on a retrospective analysis 
of retrospectively collected data of treated patients. As a consequence, the 
results show associations but not causal relations, and it is unclear whether 
intracranial hypertension causes poor neurocognitive outcomes, poor 
neurocognitive outcomes result from the occurrence of other secondary 
insults or the combination of both. Third, detailed information on the 
clinical management of the patients and on the occurrence of clinical 
complications (infections, seizures etc.) was unavailable. In this regard, the 
extraction of a universal ICP visualization curve will likely require the 
collection of a large and extensive dataset that includes all the information 
before mentioned. Last, the datasets collect continuous ICP and MABP 
recordings at different sampling frequencies and significantly different 
duration. Despite these limitations, multicenter studies with continuous 
ICP measurements of patients with aSAH, such as the one presented here, 
are exceptionally rare and therefore sorely needed [21]. 

The results of this study plead against the concept of a universal and fixed 
ICP threshold and suggest that the burden of elevated ICP might be better 
quantified with a more dynamic metric, such as the dose. Nonetheless, the 
time-intensity combinations on the transition should certainly not be 
viewed as treatment thresholds, as they represent an epidemiological 
finding in patients in whom the ICP was actively treated and of whom no 
detailed information on postoperative complications is available. Clinically 
relevant ICP dose intensity and duration thresholds still needs to be 
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defined, and are likely to be highly dependent on the presence of secondary 
complications and on the clinical strategy used for the management of 
aSAH. 

4.5   CONCLUSION 

The concept of association between ICP doses and neurological outcome, 
which has already been demonstrated in patients with TBI, may be valid in 
patients with aSAH. We have demonstrated that the burden of ICP dose is 
a strong predictor of neurological outcomes for patients with aSAH. 
Additional studies are needed to validate these findings. 
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4.A   APPENDIX 
4.A.1   Supplementary figures and tables 

 

Figure 4.A.1   Percentage of monitoring time spent by the patient with an ICP 
above 20mmHg. Panel A) Innsbruck cohort. Panel B) Monza cohort. The number 
of patients is reported in percentages 
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Figure 4.A.2 (part I) Distribution of the intracranial pressure (ICP) values per 
subject per day.
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Figure 4.A.2 (part II) Distribution of the intracranial pressure (ICP) values per 
subject per day. Every subject is indicated with a boxplot, the box extends from the 
25th to the 75th quartile, and the lower and top extremes of the whiskers represent 
the maximum and minimum values of the distribution. Panel A: Distribution of ICP 
values of the patients from Innsbruck cohort. Panel B: Distribution of ICP values of 
the patients from Monza cohort. The PICP20 represents the median across the 
cohort of the percentage of monitoring time every patient spent above the threshold 
of 20 mmHg. The p-values of the Mann-Whitney U-test are reported.
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Figure 4.A.3 (part I) Distribution of the mean arterial blood pressure values 
(MABP) per subject per day.



105

Figure 4.A.3 (part II) Distribution of the mean arterial blood pressure values 
(MABP) per subject per day. Every subject is indicated with a boxplot, the box 
extends from the 25th to the 75th quartile, and the lower and top extremes of the 
whiskers represent the maximum and minimum values of the distribution. Panel A: 
Distribution of MABP values of the patients from Innsbruck cohort. Panel B: 
Distribution of MABP values of the patients from Monza cohort. The PMABP80

represents the median across the cohort of the percentage of monitoring time every 
patient spent above the threshold of 80 mmHg. The p-values of the Mann-Whitney 
U-test are reported.
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Table 4.A.1   Multivariable logistic regression analysis, Innsbruck cohort, 
first week of monitoring 

 VARIABLE OR CI p 

Age -0.06 [-0.13 to 0.004] 0.07 

DCI -1.01 [-2.48 to 0.46] 0.18 

GCS 0.12 [-0.04 to 0.29] 0.15 

ICP pressure-time burden -3.59 [-6.85 to -0.32] 0.03 

CI: confidence interval 

DCI: delayed cerebral ischemia 

 

4.A.2   Analysis of the clinical management of the patients with aSAH for 
the different cohorts 

Differences in the clinical protocol for aSAH management were 
investigated. We analysed: the surgical strategy of each center for securing 
the ruptured aneurysm, the percentage of patients that underwent coiling 
and clipping (Figure 4.A.4), the percentage of patients that underwent 
vasopressors and sedatives daily (Figure 4.A.5, 4.A.6), the average amount 
of cerebrospinal fluid (CSF) that was drained daily from the patients (Figure 
4.A.7, 4.A.8). The level of the EVD was not standardized between the two 
centers. Both centres use individual drainage levels, but in the Innsbruck 
center the drainage level usually starts at +5 cm, while in the Monza center 
the drainage level usually starts at +10 cm. These four variables were 
selected across the more complex range of factors that are part of aSAH 
management as the most important one to characterize aSAH management 
and to influence ICP values.  

 



107

Figure 4.A.4 Distribution of patients that underwent coiling or clipping in the two 
populations. The proportions of coiling and clipping are not statistically significant 
different, p = 0.13 and p = 0.17 respectively. Panel A) Innsbruck cohort Panel B) 
Monza cohort

Figure 4.A.5 Percentage of patients that underwent sedatives daily. The analysis 
is limited to the first week of monitoring time. For every day of monitoring, the 
percentage of patients that underwent sedatives is indicated with a red bar for 
Innsbruck patients and with a blue bar for Monza patients. The percentage is 
computed by considering the total number of patients admitted in the study, the 
number of patients whose ICP was monitored that day is indicated on top of every 
bar.
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Figure 4.A.6 Percentage of patients that underwent vasopressors daily. The 
analysis is limited to the first week of monitoring time. For every day of monitoring, 
the percentage of patients that underwent vasopressors is indicated with a red bar 
for Innsbruck patients and with a blue bar for Monza patients. The percentage is 
computed by considering the total number of patients admitted in the study, the 
number of patients whose ICP was monitored that day is indicated on top of every 
bar. 

 

Figure 4.A.7 Comparison of the average CSF that was drained daily in the patients 
of the two cohorts. The analysis is limited to the first week of monitoring time. For 
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every day of monitoring, the distribution of the average CSF that was drained daily 
from every patient is indicated with a red boxplot for Innsbruck patients and with a 
blue boxplot for Monza patients. Below every boxplot it is reported the number of 
subjects with a valid CSF daily recording, i.e. the number of subjects that were used 
to extract the boxplots. The Mann-Whitney U-test and the Kolmogorov-Smirnoff 
(KS) test are reported at the bottom of the image to compare the two cohorts for 
every day of the first monitoring week.  

 

 

Figure 4.A.8 Boxplots of the total amount of cerebral spinal fluid that was drained 
from the patients during the first monitoring week. The cohorts are compared with 
the Mann-Whitney U-test and the Kolmogorov-Smirnoff (KS) test, whose values are 
reported in the figure and respectively equal to p <0.001 and p <0.001. Below every 
boxplot it is reported the number of subjects used to extract the boxplot.  
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Dear Editor, 

In patients with traumatic brain injury (TBI), the management of elevated 
intracranial pressure (ICP) is mainly reactive, with ICP treated aggressively 
when it rises above 22 mmHg [1, 2].  

To drive TBI care towards proactiveness, in 2013 Güiza et al. [3] developed 
a machine learning model for the prediction of extremely elevated ICP. 
Providing a 30 minutes forewarning, the model predicted with good 
discrimination and good calibration, events of ICP above 30 mmHg that 
lasted more than 10 minutes.  

The model, which only requires continuous ICP and mean arterial blood 
pressure signals, was developed on data prior to 2005. Since changes in 
clinical practice can result in progressive degradation of model accuracy, 
the model was successively validated on a multicenter adult cohort collected 
between 2009 and 2011, with unchanged performance [4].  

Similarly, the last years have seen further advances on TBI understanding 
and management, which led to the Seattle International Severe Traumatic 
Brain Injury Consensus Conference (SIBICC) in 2019 [1]. Hence, the need 
to validate the model once again, on new and independent data. In this 
study, we evaluated the performance of the model on the multicenter 
Collaborative European NeuroTrauma Effectiveness Research in Traumatic 
Brain Injury (CENTER-TBI) dataset [5].  

The validation dataset included 257 patients with TBI, who were recruited 
prospectively between 2015 and 2017 as part of the CENTER-TBI high-
resolution ICU monitoring cohort [5], see Table 5.1 for cohort 
demographics. Model performance was quantified with the metrics used in 
the previous publications [3][4], i.e. Area Under the Receiver Operating 
Curve (AUC), accuracy, sensitivity, specificity, and calibration analysis, 
while the clinical utility of the model was assessed through a decision curve 
analysis.  
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Table 5.1    

COHORTS 
BRAIN-IT 
 
N=264 

CENTER-TBI 
EXTERNAL 
VALIDATION 
N= 257 

p value§ 

Age, years, median (IQR) 42 (26 to 58) 47 (30 to 61) 0.02 

Sex, male, n (%) 212 (80) 208 (81) 0.87 

Glasgow Coma Scale 
total, median (IQR) 

7 (4 to 10) 6 (3 to 10) 0.14 

§ p-values for continuous and ordinal variables with non-normal distribution (age, Glasgow 
Coma Scale) were computed with the Mann Whitney U-test, p-values for categorical variables 
(sex) were computed with the Chi-square test for proportions. 

 

In this external validation dataset, which was collected almost 10 years later 
than the original development cohort, the model was still able to predict 
future episodes of extremely elevated ICP with good discrimination and 
calibration (AUC = 0.93, calibration slope 1.22, calibration in the large = 
-0.04), see Figure 5.1. At the same cutoff of the original study, the model 
presented an accuracy of 88%, sensitivity of 83%, and specificity of 91%. 
These results demonstrate that the prediction model developed by Güiza et 
al. [3] is extremely robust to inter-center variability and most importantly, 
to progressive changes in clinical practice. The decision curve showed 
clinical usefulness for almost all risk thresholds (respectively from 4% to 
96%), as shown in Figure 5.1. Acceptable alerting thresholds could range 
from 20% to 50% depending on the risk of the action taken in response to 
the alert, how the clinician values different outcomes for a specific patient, 
and the center-specific protocol for the management of elevated ICP. We 
believe that the model represents a promising and reliable tool for the 
proactive management of extremely elevated ICP, and that its early 
warnings on imminent ICP above 30 mmHg have the potential to improve 
clinical practice. Future prospective intervention studies are required to 
assess the impact of the use of this model at the bedside on mortality and 
patient outcome. 
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ABSTRACT 

 

BACKGROUND:   Treatment and prevention of elevated intracranial 
pressure (ICP) is crucial in patients with severe traumatic brain injury 
(TBI). Elevated ICP is associated with secondary brain injury, and both 
intensity and duration of an episode of intracranial hypertension, often 

the concept of dose is not used in clinical practice and not available as a 
bedside monitor metric, probably limited by its a posteriori calculation. 
Prediction of such harmful episodes of ICP dose could allow for a more 
proactive and preventive management of TBI. The goal of this study was to 
develop and validate a machine-learning (ML) model to predict potentially 
harmful ICP doses in patients with severe TBI.  

METHODS:   The prediction target was defined based on previous studies 
and included a broad range of doses of elevated ICP that have been 
associated with poor neurological outcomes. ML models were used, with 
minute-by-minute ICP and mean arterial blood pressure signals as inputs. 
Harmful ICP episodes were predicted with a 30 minutes forewarning. 
Models were developed in a multi-center dataset of 290 adult patients with 
severe TBI and externally validated on 264 patients from the Collaborative 
European Neuro-trauma Effectiveness Research in Traumatic Brain Injury 
(CENTER-TBI) dataset.  

FINDINGS:   The external validation of the prediction model on the 
CENTER-TBI dataset demonstrated good discrimination and calibration 
(AUC: 0·94, accuracy: 0·88, sensitivity: 0·77, specificity: 0·93, calibration-
in-the-large: 0·03, calibration slope: 0·93). Similar performance were 
obtained when the model was tested for different forewarning times. 

INTERPRETATION:   The proposed prediction model provides accurate 
and timely predictions of harmful doses of ICP on the development and 
external validation dataset. A future interventional study is needed to assess 
whether early intervention on the basis of ICP dose predictions will result 
in improved outcomes.  
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6.1   INTRODUCTION 
 

Patients with severe Traumatic Brain Injury (TBI) may suffer from 
prolonged periods of elevated intracranial pressure (ICP),[1] with an 
increased risk of mortality and poor neurological outcomes [2 4].  

Current guidelines suggest to treat the ICP when it rises above 22 
mmHg [5], but such threshold-based clinical strategy presents some 
important limitations [6 9]. First, the proposed threshold is population-
derived, therefore it does not allow therapy to be targeted to specific 
subgroups of patients. On this note, the cohort study [10] that led to the 
most recent change in threshold recommendations from 20 to 22 mmHg 
actually identified different thresholds for elderly and female patients. 
Second, some studies have shown that ICP levels lower than 22 mmHg 
might also associate with worse neurological outcomes [11, 12]. Third, 
secondary injury by elevated ICP is not adequately defined by the simple, 
sometimes brief, crossing of a universal threshold.  

The ICP dose, i.e. the combination of intensity and duration of an ICP event, 
might offer a better representation of secondary brain injury due to elevated 
ICP. High doses of elevated ICP have been associated with worse clinical 
outcomes in several observational studies [11, 13 15], indicating that 
changes in ICP over time may have a greater clinical relevance than time-
point ICP values above a fixed threshold [14, 16].  

The visualization of the association between different ICP intensities and 
durations, namely ICP doses, and long-term neurological outcomes, as 
described in a color coded heat map, was initially proposed by Güiza et 
al. [11], see Figure 6.1 panel C. The visualization has been further replicated 
in other large datasets [12, 17]. An exponential line separates the ICP doses 
that occur more frequently in patients with worse neurological outcomes 
(lower Glasgow Outcome Score [GOS] [18]) from the doses that occur more 
frequently in patients with better outcomes (higher GOS). These studies 
suggest that high ICP values can be tolerated if maintained for a short 
period. On the contrary, ICP values between 15 mmHg and 22 mmHg, if 
maintained for a prolonged time, could still be associated with poor 
neurological outcomes. Panel A) and B) of Figure 6.1 show an example of 
how the quantification of ICP harmfulness may vary according to the 
criterion in use, namely whether we rely on the concept of ICP > 22 mmHg 
or the concept of harmful ICP doses. 
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In spite of this previous work [11, 14], the concept of ICP dose has not 
reached clinical practice. One limitation could be its retrospective 
calculation. As such, the dose of ICP informs the clinician on past ICP 
events (which are associated with possible patient outcomes), but has little 
effect on the planning of the future therapeutic strategy. In this context, 
early-warnings of impending harmful doses of ICP could be valuable 
information for the attending clinician [7]. Several prediction models have 
attempted to predict ICP elevations [19 23] but none of them are currently 
in use at the bedside.  

Given the complexity of TBI pathophysiology, ICP alone cannot provide 
complete knowledge of the status of the brain [2, 24, 25]. For instance, the 
mean arterial blood pressure (MAP) is an important contributor to the 
perfusion status of the brain. Local brain oxygenation can be monitored 
with the partial pressure of brain tissue oxygen  (PbtO2). Similarly, 
cerebrovascular autoregulation (CAR) plays a crucial role in fostering 
oxygen and nutrient supply. CAR is a dynamic phenomenon that is difficult 
to assess in a clinical context [26] and for which computational indices, 
such as the Pressure Reactivity index (PRx) [27] or the low-frequency 
autoregulatory index (LAx) [28], have been proposed. These indices, which 
are computed from the ICP and MAP signals, are currently only available in 
selected research settings in the form of research tools (ICM+, Cambridge 
Enterprise Ltd., UK).  

In this study, we hypothesized that the analysis of routinely monitored 
signals through advanced machine learning techniques, could allow for the 
early prediction of events of harmful ICP doses. Machine learning (ML) 
algorithms use mathematical rules to capture patterns in the observed data 
such patterns can subsequently be applied on a new, unseen dataset. 
Specifically, the goal of this study was the development and external 
validation of a ML model to predict future harmful ICP doses with a 30 
minute forewarning.  
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Figure 6.1   Panel A) and B) Visualization of ICP harmfulness as evaluated 
according to different criteria. Panel A) ICP harmfulness is defined by events of 
ICP>22 mmHg. Events of ICP that meet this criterion are identified with the letters 
a, b, c and d
of the visualization proposed by Güiza et al. [11] (see panel C). Examples of the 
events of ICP that meet this criteria are identified with the letters f, g and h. In detail, 
f is an event of ICP>15 mmHg that lasts more than 180 minutes, g is an event of 
ICP>28 mmHg that lasts more than 10 minutes, and h is an event of ICP>18 mmHg 
that lasts more than 70 minutes. The same events are also displayed in the 
visualization of panel C) with white circles. In event e the ICP is above 22 mmHg 
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visualization. The model provides a prediction at t(0), for impending harmful events 
at t(+30). The model prediction is based on features that are extracted in the past 4 
hours of monitoring, starting form t(-239) to t(0). Panel C) and D) Visualization of 
the association between doses of ICP, identified by intensity and duration, and the 
6-months Glasgow Outcomes Score (GOS). Panel C) shows an adaptation of the 
original representation as proposed by Güiza et al. [11]. Events of dose of ICP that 
occur more frequently in patients with worse GOS are represented in red, while 
events of ICP that occur more frequently in patients with better 6-months GOS are 
represented in blue. The four white circles indicate the position of the ICP events 
displayed in panel B). Panel 
of the visualization of Güiza et al. [11] in sub-areas. Every sub-area extends until the 
40 mmHg threshold (extreme right border of the figure), where multiple subareas 
can overlap. Dashed lines indicate when the border of a sub-area overlaps with other 
sub-areas. A dedicated prediction model was developed for each sub-area. The name 
of the model for each sub-area is indicated in the top as GPx, where x is the 
corresponding lower ICP threshold that identifies that specific sub-area. 

 

6.2   METHODS 

6.2.1   Database 

The development cohort included the data of 290 patients from 6 
prospectively and retrospectively collected databases: Brain-IT [29] is a 
European multi-center database that contains data of 206 adult patients 
with severe TBI admitted to 22 intensive care units (ICU)s  between March 
2003 and July 2005. Ethical approval for the collection and later analysis 
of the data was obtained from the Multi-Centre Research Ethics Committee 
for Scotland MREC/02/09. Ethical approval was additionally obtained 
from the local medical ethics committee of the centers involved. Of the 
remaining 84 patients: 38 were admitted in the San Gerardo Hospital in 
Monza, Italy between March 2010 and April 2013; 27 from the University 
Hospitals of Leuven, Belgium between September 2010 and September 
2013; 19 from the NEMO (Individualized targeted monitoring in 
neurocritical care) project at the Antwerp University Hospital, Belgium, 
between March 2010 and June 2013; All centers obtained ethical approval 
from the local medical ethics committee. 

The external validation cohort was composed by 264 patients included in 
the High Resolution substudy of  the Collaborative European Neuro-trauma 
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) 
dataset [30]. The CENTER-TBI dataset prospectively collects data of adult 
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patients with TBI admitted to 47 European ICUs between 2015 and 2017. 
Ethical approval for CENTER-TBI was obtained from the local ethic 
committee for each recruiting site.  

All datasets include continuous (minute-by-minute) recordings of ICP and 
MAP signals. Missing data of duration less than 2 consecutive values were 
imputed with the median value of the previous 10 minutes recordings. 
Patients were declared eligible for the study if their ICP recordings were 
acquired with an intra-parenchymal ICP probe. Intracranial hypertension 
was treated according to the guidelines for the treatment of severe TBI [31, 
32] in use during data acquisition.  

 

6.2.2   Predictive task 

The model predicts with 30 minutes forewarning a broad set of events of 
ICP whose dose (combination of intensity and duration) was associated 
with poor long-term neurological outcomes in the visualization method 
proposed by Güiza et al. [11], as represented by the red area of Figure 6.1, 
panel C. Given that the predictive patterns that precede the different 
harmful ICP doses may differ, we divided the red area into several sub-areas 
and targeted each sub-area separately. The red sub-areas were defined as 
follows: ICP > 15 mmHg for more than 180 minutes, ICP > 18 mmHg for 
more than 70 minutes, ICP > 20 mmHg for more than 35 minutes, 
ICP > 22 mmHg for more than 25 minutes, ICP > 24 mmHg for more than 
18 minutes, ICP > 26 mmHg for more than 14 minutes, ICP > 28 mmHg, 
ICP > 30 mmHg and ICP > 34 mmHg for more than 10 minutes. An 
example of the red subareas can be seen in Figure 6.1, panel D. The 
combination of these red sub-areas create the prediction target of the 
model, which is a simplified representation of the red area proposed by 
Güiza et al. [11] . 

 

6.2.3   Model development 

The development of the model for the prediction of ICP events in the entire 
red area was performed as follows: 

1. First, a prediction model was developed for each specific red sub-
area. To predict doses of ICP > 30 mmHg for more than 10 
minutes, we used the prediction model previously proposed by 
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Güiza et al. [23]. This Gaussian Processes (GP) regression model 
was similarly developed on the Brain-IT [29] database and 
presented robust performance when externally validated on a large 
adult cohort and on the CENTER-TBI dataset [33, 34] . 

2. Afterwards, we developed a model that combines the predictions of 
the models for the red sub-areas and provides an integrated 
prediction. This integrated prediction does not refer to a specific 
region of the red area, but it generally refers to ICP doses in the red 
area.  

To increase generalizability and avoid overfitting, each model was trained 
with 10-fold cross validation (CV). 

 

6.2.4   Prediction models for red sub-areas 

The prediction models for the red sub-areas were developed with GP 
Regressor with a Rational Quadratic kernel function. The use of a GP 
Regressor was due to the good performance that this method obtained in 
previous studies [34]. We will refer to these sub-models as GPX, where X is 
the lower ICP threshold that identifies that specific sub-area. For example, 
GP15 refers to the prediction model for the red sub-area delineated by ICP 
doses of ICP > 15 mmHg for more than 180 minutes, see Figure 6.1 panel 
D.  

Input features were extracted from the 4 hours of continuous ICP, MAP and 
LAx signals preceding the prediction, namely between t(-239) and t(0) as 
shown in the example of Figure 6.1 panel B. For a complete list of the 
extracted features see Appendix 6.A.1. 

To avoid overfitting, for each GP model, the most predictive features were 
selected through the combination of a linear and non-linear method, i.e. 
feature selection via LASSO [35] and features selection via mutual 
information [36, 37]. Feature importance was computed with the 
permutation importance technique [38].  

 

6.2.5   Prediction model for the entire red-area 

The model for the prediction of the broad set of ICP events in the red area 
is a Random Forest (RF) classifier. For this task, the RF classifier 



 

127 
 

demonstrated superior performance as compared to other tested models 
(linear regression model, GP classifier and decision tree classifier). For 
simplicity, we will further refer to this model as RFred model. The RFred 
model provides as output the probability that the patient will experience 
events of ICP in the red area in the next 30 minutes. We believe this output 
type, i.e. probability of being in the red area, is particularly congenial to the 
clinical environment.  

The only inputs to the RFred model are the predictions of the GPx models 
for the red sub-areas. No ICP, MAP or LAx features were entered into the 
RFred model to avoid information leakage.  

 

6.2.6   External validation 

To assess generalizability, the GPxs and RFred models were externally 
validated on the 264 patients from the CENTER-TBI dataset [30]. External 
validation is a crucial step in model development, given that it assesses the 

performance of the model when applied to an unknown population of 
patients.  

We used the external validation dataset to perform an additional 
exploratory analysis. In detail, we assessed changes in performance of the 
model when predicting events of ICP in the red area with different 
forewarning times, namely 5 minutes, 15 minutes, 45 minutes and 60 
minutes. This exploratory analysis aimed at providing insights on the 
performance of the model when used in real time, where the forewarning 
time of 30 minutes might not strictly apply and where deleterious episodes 
of ICP dose could be potentially predicted even earlier. 

 

6.2.7   Model performance and statistical analysis 

Performance of the models was assessed with the following metrics: area 
under the receiver operating characteristic curve (AUC), area under the 
precision-recall curve (AP), accuracy, precision, sensitivity and specificity. 
Performance metrics on the development cohort were provided in terms of 
mean (SD) of the 10-fold CV iterations. The calibration was assessed by 
using calibration plots and by computing the calibration-in-the-large and 
calibration-slope. Clinical importance was assessed with decision curves. 



 

128   | CHAPTER 6 
 

Decision curve analysis compares the clinical usefulness of using the 
prediction model to alert the clinicians (and therefore trigger medical 

f
never be alerted by the condition of the patient. For this prediction model, 
medical intervention represents the need for an additional medical 
evaluation of the clinical status of the patient. 

Analyses were performed in Python (version 3.5, 
https://www.python.org/). Statistical analysis, model development and 
model evaluation were performed with the following libraries: numpy 
(version 1.15, https://numpy.org/), sklearn (version 1.1, https://scikit-
learn.org/stable/) and scipy (version 0.20, https://www.scipy.org/). 
Calibration curves were extracted with the R-based library givitiR (version 
1.3, https://CRAN.R-project.org/package=givitiR). 

 

6.2.8   Trustiness and transparency of the model 

This study adheres to the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guideline [39]. In addition, to favor trustiness and transparency, 
we provided a model fact sheet that summarizes the main characteristics of 
the proposed model, after the example proposed by Brajer et al. [40]. 

 

6.3   RESULTS 

Patients experienced a median [IQR] number of events of ICP dose in the 
red area of 5 [1-28], for a median [IQR] percentage of monitoring time 
spent in the red area of 12 [0-46], against a median [IQR] percentage of 
monitoring time spent with ICP > 22 mmHg of 1 [0-6]. The external 
validation cohort included 8421 events of ICP dose in the red area and 
16840 selected events in the blue area. 

Here we only report the results of the external validation of the GPx and 
RFred models. In short, on the 10 folds CV internal validation sub-sets the 
RFred presented a mean (SD) AUC of 0·92 (0·02), AP of 0·87 (0·03), 
accuracy of 0·86 (0·02), precision of 0·81 (0·04), sensitivity of 0·76 (0·04) 
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and specificity of 0·91 (0·02). More information on the performance of the 
GPx and RFred models on the development cohort and feature importance 
analysis can be found in Appendix 6.A.2, 6.A.3, 6.A.4 and 6.A.5. 

On the CENTER-TBI dataset, all GPx models presented an AUC above 0·83, 
an AP above 0·75, an accuracy above 0·74, a precision above 0·57, a 
sensitivity above 0·55 and specificity above 0·71. The GP models presented 
a calibration-in-the-large below 0·05 and mean calibration slope between 
0·78 and 1·10. The calibration curves p-values were below 0·049. See Table 
6.1 for complete results for each model. 

When tested on the CENTER-TBI dataset, the RFred model for the 
prediction of the complete red area presented an AUC of 0·94, an AP of 
0·89, an accuracy of 0·88, a precision of 0·85, a sensitivity of 0·77 and a 
specificity of 0·93. Visually, the model showed adequate calibration, with a 
calibration-in-the-large of 0·03 and a calibration slope of 0·91 (despite a p-
value < 0·01), see Figure 6.2, panel A. Also on the CENTER-TBI dataset the 

 risk range [0·12 to 0·87], see Figure 6.2, panel B. Table 
6.2 summarizes the main characteristics of the model in the form of a model 
fact sheet. 

When tested for different forewarning times, the model presented a 
classification accuracy of 0.89, 0.89, 0.88 and 0.88 for respectively a 5 
minutes, 15 minutes, 45 minutes and 60 minutes forewarning time. For the 
complete list of the performance metrics, see Appendix 6.A.6. 
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Figure 6.2   Performance metrics of the RFred model for the prediction of the red 
area on the external validation dataset. Panel A) calibration curve. Panel B) decision 
curve. Panel C) violin plots of the predicted probabilities for events in the red and 
blue area. 
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Table 6.2  Model fact sheet 

MODEL FACT SHEET 

MODEL NAME:   Prediction model for harmful ICP doses in patients with 
traumatic brain injury (TBI). 
SUMMARY: 
This model uses intracranial pressure (ICP) and mean arterial blood pressure 
(MAP) inputs to predict, with a 30 minutes forewarning, a broad range of events 
of ICP doses associated with worse long-term neurological outcomes in patients 
with TBI. The model was developed by the Laboratory of Intensive Care Medicine 
of KU Leuven, Belgium, between 2020 and 2021. 
MECHANISMS 

 OUTCOME ctions of potentially harmful ICP doses 

 OUTPUT 

harmful ICP doses 

 SUGGESTED ALERTING THRESHOLDS 

depending on the risk level of the medical intervention 

 PATIENT POPULATION dults (>18 years old) with severe TBI 
and invasive intra-parenchymal ICP monitoring 

 TIME OF PREDICTION  

 PREDICTIONS DATA TYPE -by-minute predictions 

 INPUT DATA TYPE P recordings 

 INPUT DATA SOURCE ..... bedside monitors or local Patient Data 
Management System (PDMS) 

 TRAINING DATA SIZE 

(20938 samples) 

 MODEL TYPE . ensembled GP-based models and RF-based model 
VALIDATION AND PERFORMANCE 

 EXTERNAL VALIDATION ON CENTER-TBI (264 PATIENTS): AUC: 0·94, 
AP: 0·89, accuracy: 0·88, precision: 0·85, sensitivity: 0·77, specificity: 
0·93. 

USES AND DIRECTIONS 
This model is intended to be used as an additional source of information on which 
to base the management of patients with severe TBI. In specific, this model 
provides alerts for the early identification of future events of potentially harmful 
ICP doses and therefore it alerts the clinician when a patient is in need of specific 
medical attention. 
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6.4   DISCUSSION 

In this study, we present a machine-learning model for the prediction of 
potentially harmful doses of ICP in patients with severe TBI.  The model, 
which predicts a broad range of ICP doses previously associated with poor 
long-term neurological outcomes, has good performance and good clinical 
utility even when validated on an external, multi-center, prospectively 
collected dataset.  

In the past, several studies have attempted to predict single ICP values or 
episodes of elevated ICP [19, 21, 22, 34], with common characteristics. 
Several of these models focused on one specific ICP insult of specific 
intensity and duration, not taking into consideration the complex, broad 
range of ICP events that have been associated with poor outcomes [19, 34]. 
Moreover, most of these prediction models use a short forewarning time, 
which may be insufficient to trigger a clinically useful intervention [21, 22]. 
An additional characteristic that could challenge a potential clinical 
implementation is the large number of required inputs, often from multiple 
monitoring sources, which not only obstacle the transfer to a clinical setting 
but also increases the risk of overfitting [22]. Last, but most importantly, 
most of these models lack external validation on geographically and 
temporally independent datasets [19, 21, 22]. External validation is strongly 
recommended [39, 41, 42], to assess the model generalizability capacities 
and consequently to evaluate the performance of the model when applied 
to a general, unknown population.  

The present model presents an answer to these issues in many ways.  

First, the model presents good performance also when externally validated 
on the CENTER-TBI dataset, with an AUC of 0.94, an AP of 0.89, an 
accuracy of 0.88, a precision of 0.85, a sensitivity of 0.77 and a specificity 
of 0.93. As this large, external, multicenter dataset was collected more than 
10 years after the development cohort, this good performance not only 
proves the robustness of the model towards its application to different ICU 
settings, but it also suggests robustness to changes in the clinical practice 
over time. On the CENTER-TBI dataset the model presented clinical 
usefulness within the risk thresholds [0·12-0·87]. Acceptable alerting 
thresholds will need to be evaluated carefully by the clinician and will 
depend on the risk level of the medical intervention that may be triggered 
by the alert. In other words, the alerting threshold will depend on how much 
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the clinician accepts an high number of false positives (high sensitivity) as 
compared to a high number of false negatives (high specificity). 

Second, the prediction target is a broad range of episodes of intracranial 
hypertension [11]. This target was based on a previous study [11], but 
similar associations with outcome were observed in a large single-center 
cohort [12] and in the CENTER-TBI dataset [17]. This broad target provides 
a more complete approach to the prevention of potentially harmful doses of 
ICP, targeting ICP events that are not only associated with increased 
mortality but that are also associated with reduced neurological outcomes.  

Third, the forewarning time interval was defined after consultation with 3 
clinicians of the ICU of the University Hospitals of Leuven, Belgium, and a 
30 minutes forewarning was identified as adequate to trigger a useful 
clinical response. Importantly, the exploratory analysis on the CENTER-
TBI dataset showed that performance does not change remarkably for 
different forewarning time. This suggests that the model could provide 
prediction of harmful doses of ICP even earlier. In addition, it proves the 
robustness of the model. Future studies are needed to assess the role of the 
forewarning time when using the model in real time.  

Fourth, and finally, the model is sparse, given that it requires as inputs only 
the continuous ICP and MAP signals, two signals that are routinely 
recorded in patients with severe TBI.  

This study has some limitations. First, harmful ICP events were based on 
the visualization proposed by Güiza et al. [11] that describes the association 
between ICP doses and long term neurological outcomes on the general 
population. However, the color-coded visualization may vary for different 
sub-groups of patients (males vs females, old vs young, low vs high 
treatment intensity level etc..) [11]. To date, obtaining such visualizations 
for stratified groups of patients with TBI is challenging, since the necessary 
large, preferably prospective, datasets with large subgroups of patients 
satisfying the condition of interest are lacking. Until such datasets become 
available, the development of predictions models for different sub-groups 
of patients remains challenging. Second, the data used were all acquired in 
European settings. Validation on datasets collected in non-European ICUs 
are therefore necessary to fully assess generalizability. Third, the CAR 
status of the patient can affect the association between ICP dose and 
outcomes, where patients can better tolerate elevated doses of ICP if CAR is 
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preserved [43]. In an ideal setting, the prediction target of the model should 
dynamically adapt to changes in the CAR status. However, optimal methods 
to measure CAR have not been developed yet. Therefore, in this study we 
limited the prediction target to the case unadjusted for CAR status. 
However, information on the CAR status of the patient was included as 
input to the models in the form of LAx signal. The fourth limitation of this 
study is linked to the lack of absolute explainability of machine learning 
models, which may limit the degree to which it is trusted and accepted by 
nurses and clinicians. To overcome this limitation, we performed a feature 
importance analysis for each GP model. In addition, to increase the 
trustiness and transparency of the model, not only did we report the results 
in accordance with the TRIPOD guidelines, but we also provided a model 
fact sheet to summarize the main characteristics of the proposed model. 
The last limitation of the study is that we target ICP doses that have been 
associated with poor outcomes. However, association does not infer 
causality, and whether early intervention on the basis of predicted doses of 
ICP will result in improved outcomes needs to be assessed in future 
interventional studies. 

Despite these limitations, the presented model represents the first example 
of an accurate model for the prediction of a broad range of harmful ICP 
doses in patients with TBI. To develop and externally validate this model 
we used two of the largest multicenter databases for patients with TBI with 
continuous monitoring data and outcomes. We believe that this model 
could provide valuable information for the clinical management of patients 
with TBI. Future studies will focus on evaluating the performance of the 
model when prospectively applied on continuous signals at the bedside. In 
this context, of particular interest is the impact of treatment intensity for 
elevated ICP on predictions, which needs to be further evaluated. In 
addition, future randomized clinical trials will be necessary to identify the 
risk of medical interventions that may be taken in response to the alerts of 
the models, to assess user acceptance and most importantly to assess 
whether the use of this model at the bedside may have a positive impact on 
long-term neurocognitive outcomes. 

 

6.5   CONCLUSIONS 

In this study we present an accurate, sparse and robust model for the 
prediction of events of ICP doses that are associated with worse long-term 
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neurological outcomes. Using only the ICP and MAP signals, our model can 
predict with 30 minute forewarning, events of harmful doses of ICP with 
high accuracy, high sensitivity and specificity. The model presents good 
performance even when validated on a large external multicenter dataset, 
showing robustness to changes in clinical setting and practice. Future 
interventional studies are needed to assess the impact of the use of this tool 
at the bedside on clinical practice and on patient outcomes. 
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6.A   APPENDIX 

 
6.A.1   Complete list of the extracted features 

Table 6.A.1 lists the 228 potential predictors that were generated from the 
intracranial pressure (ICP), mean arterial blood pressure (MAP) and low 
frequency autoregulatory index (LAx)[44] signals. These included: a) 
median value and standard deviation of consecutive non-overlapping 
intervals of the continuous signal b) frequency-components analysis of the 
continuous signal c) presence of previous events of ICP doses in the red 
area, in the 4 hours preceding the prediction. Features were extracted if the 
amount of missing values did not exceed the 10% of the duration of the 
prediction window (of duration 4 hours). 

The LAx is computed from the ICP and MAP continuous signals [44], for 
computational reasons LAx features are extracted only from the last 2h of 
monitoring preceding the prediction. 

 

Table 6.A.1  List of features extracted from the ICP, MAP and LAx 
signals. 

NUMBER OF 
FEATURES FEATURE DESCRIPTION 

24 Median of ICP across consecutives, non-overlapping 
windows of duration 10 minutes during the 4h window 

24  Median of MAP across consecutives, non-overlapping 
windows of duration 10 minutes during the 4h window 

12 Median of LAx across consecutives, non-overlapping 
windows of duration 10 minutes during the 2h window 

24 Standard deviation of ICP across consecutives, non-
overlapping windows of duration 10 minutes during the 4h 
window 

24 Standard deviation of MAP across consecutives, non-
overlapping windows of duration 10 minutes during the 4h 
window 

12 Standard deviation of LAx across consecutives, non-
overlapping windows of duration 10 minutes during the 2h 
window 

8 Median of ICP across consecutives, non-overlapping 
windows of duration 30 minutes during the 4h window 

8 Median of MAP across consecutives, non-overlapping 
windows of duration 30 minutes during the 4h window 

4 Median of LAx across consecutives, non-overlapping 
windows of duration 30 minutes during the 2h window 
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8 Standard deviation of ICP across consecutives, non-
overlapping windows of duration 30 minutes during the 4h 
window 

8 Standard deviation of MAP across consecutives, non-
overlapping windows of duration 30 minutes during the 4h 
window 

4 Standard deviation of LAx across consecutives, non-
overlapping windows of duration 30 minutes during the 2h 
window 

4 Median of ICP across consecutives, non-overlapping 
windows of duration 60 minutes during the 4h window 

4 Median of MAP across consecutives, non-overlapping 
windows of duration 60 minutes during the 4h window 

2 Median of LAx across consecutives, non-overlapping 
windows of duration 60 minutes during the 2h window 

4 Standard deviation of ICP across consecutives, non-
overlapping windows of duration 60 minutes during the 4h 
window 

4 Standard deviation of MAP across consecutives, non-
overlapping windows of duration 60 minutes during the 4h 
window 

2 Standard deviation of LAx across consecutives, non-
overlapping windows of duration 60 minutes during the 2h 
window 

5 First 5 coefficients of the cepstrum of the ICP signal during 
the 4h window 

5 First 5 coefficients of the cepstrum of the MAP signal during 
the 4h window 

5 First 5 coefficients of the cepstrum of the LAx signal during 
the 2h window 

5 Largest 5 frequency components of the Fourier transform of 
the ICP signal during the 4h window 

5 Largest 5 frequency components of the Fourier transform of 
the MAP signal during the 4h window 

5 Largest 5 frequency components of the Fourier transform of 
the LAx signal during the 2h window 

4 Frequency of the largest 5 frequency components of the 
Fourier transform of the ICP signal during the 4h window 
(excluding the 0Hz frequency) 

4 Frequency of the largest 5  5 frequency components of the 
Fourier transform of the MAP signal during the 4h window 
(excluding the 0Hz frequency) 

4 Frequency of the largest 5 frequency components of the 
Fourier transform of the LAx signal during the 2h window 
(excluding the 0Hz frequency) 

1 Presence of episodes of ICP doses in the targeted red sub-
area in the 4h window (yes/no variable) 

1 Number of episodes of ICP doses in the targeted red sub-
area in the 4h window 
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1 Average permanence in the targeted red sub-area in the 4h 
window 

1 Presence of episodes of ICP doses of high intensity but too 
short duration to belong the targeted red sub-area in the 4h 
window (yes/no variable) 

1 Number of episodes of episodes of ICP doses of high 
intensity but too short duration to belong the targeted red 
sub-area in the 4h window (yes/no variable) 

1 Percentage of time with passive autoregulation in the 2h 
window 
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6.A.2   Performance of the GPx models for the prediction of the red sub-
areas 

Table  6.A.2 reports the number of events per patient per red sub-area 
category.  

Table 6.A.2   Number of events in each identified red-sub-area 

MODEL NUMBER OF EVENTS IN THE 
DEVELOPMENT COHORT  

(TOTAL SIZE) 

NUMBER OF EVENTS 
PER PATIENT 
MEDIAN [IQR] 

GP34 299 (897) 0 [0 to 1] 

GP28 827 (2481) 1 [0 to 3] 

GP26 715 (2145) 1 [0 to 3] 

GP24 703 (2109) 1 [0 to 3] 

GP22 633 (1899) 1 [0 to 3] 

GP20 801 (2403) 1 [0 to 3] 

GP18 759 (2277) 1 [0 to 2] 

GP15 678 (2034) 1 [ 0 to 1] 

 

Summary of the performance of the prediction models for the red sub-area 
are presented in Table 6.A.3. On the 10 folds CV internal validation sub-
sets, all GP models presented a mean AUC above 0·86, a mean AP above 
0·64, a mean accuracy above 0·79, a mean precision above 0·64, a mean 
sensitivity above 0·81 and a mean specificity above 0·75. The GP models 
presented a mean calibration-in-the-large included between -0·05 and -
0·01 and mean calibration slope included between 1·03 and 1·09. The 
calibration curves p-values were equal to 0·069, 0·000, 0·000, 0·000, 
0·000, 0·000, 0·011, 0·000 for respectively GP34, GP28, GP26, GP24, GP22, 
GP20, GP18, GP15.
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6.A.3   Feature importance of the GPx models 

For each GPx model, feature importance was calculated with the 
permutation importance inspection technique [38]. This methodology 
provides as a metric of feature importance the percent increase in 
misclassification rate when the value of a kth feature are randomly shuffled. 
Shuffling the feature breaks the relationship between the feature and the 
target, therefore the consequent drop in performance is indicative of how 
much the model depends on that specific feature. Tables 6.A.4 to 6.A.11 
report the results of the features importance analysis for the models GP34, 
GP28, GP26, GP24, GP22, GP20, GP18, GP15 respectively. In the tables, the 
importance represents the percent increase in misclassification rate that 
follows the shuffling of the variable. The rank is calculated based on the 
importance.  

The analysis shows that the features that were extracted from the ICP signal 
most contribute to the prediction task, in particular the median ICP value 
of the 10 minutes preceding the prediction, which is 40 minutes before the 
event to predict, had the highest predictive power in several models. 
Although features summarizing the median ICP value for different time 
windows presented high predictive power, an important role was equally 
played by more complex summary statistics such as standard deviations or 
frequency components analysis. Features extracted from the MAP and LAx 
signals had a minor role in the prediction, but were still selected from the 
features selection algorithm for almost all the GPx models. 
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Table 6.A.4   Feature importance of the model GP34 
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Table 6.A.5   Feature importance of the model GP28 

 

Feature Rank Importance
ICP median minutes [230 to 240] 1st 0.00725
ICP median minutes [210 to 240] 2nd 0.00318
ICP SD minutes [0 to 10] 3rd 0.00187
ICP median minutes [180 to 240] 4th 0.00185
ICP 5th largest Fourier coefficient 5th 0.00171
ICP median minutes [220 to 230] 6th 0.00167
LAx SD minutes [210 to 220] 7th 0.00158
ICP SD minutes [40 to 50] 8th 0.00144
ICP SD minutes [150 to 160] 9th 0.00143
MAP SD minutes [30 to 40] 10th 0.00140
LAx 2nd cepstrum coefficient 11th 0.00133
ICP SD minutes [90 to 120] 12th 0.00132
ICP median minutes [190 to 200] 13th 0.00131
ICP SD minutes [120 to 150] 14th 0.00125
Number of events of ICP dose in the red-subarea 15th 0.00121
ICP 2nd cepstrum coefficient 16th 0.00119
LAx median minutes [120 to 130] 17th 0.00115
MAP SD minutes [120 to 180] 18th 0.00113
ICP SD minutes [20 to 30] 19th 0.00111
LAx median minutes [210 to 220] 20th 0.00110
ICP SD minutes [60 to 70] 21st 0.00107
ICP SD minutes [10 to 20] 22nd 0.00102
ICP SD minutes [80 to 90] 23rd 0.00101
ICP median minutes [110 to 120] 24th 0.00098
ICP 1st largest Fourier coefficient 25th 0.00096
ICP median minutes [150 to 160] 26th 0.00094
LAx 3rd cepstrum coefficient 27th 0.00094
ICP SD minutes [60 to 120] 28th 0.00092
ICP SD minutes [170 to 180] 29th 0.00091
ICP median minutes [120 to 180] 30th 0.00090
ICP SD minutes [100 to 110] 31st 0.00088
LAx frequency 3rd largest Fourier coefficient 32nd 0.00088
ICP 1st cepstrum coefficient 33rd 0.00084
MAP SD minutes [220 to 230] 34th 0.00084
ICP median minutes [120 to 150] 35th 0.00081
ICP SD minutes [60 to 90] 36th 0.00081
ICP SD minutes [150 to 180] 37th 0.00079
LAx median minutes [170 to 180] 38th 0.00078
ICP median minutes [170 to 180] 39th 0.00074
ICP SD minutes [50 to 60] 40th 0.00071
ICP median minutes [90 to 120] 41st 0.00066
ICP SD minutes [140 to 150] 42nd 0.00064
ICP median minutes [100 to 110] 43rd 0.00062
LAx median minutes [130 to 140] 44th 0.00060
ICP SD minutes [110 to 120] 45th 0.00054
ICP median minutes [160 to 170] 46th 0.00050
Presence events of ICP dose in the red-subarea 47th 0.00050
ICP median minutes [60 to 170] 48th 0.00049
ICP median minutes [150 to 180] 49th 0.00048
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Table 6.A.6   Feature importance of the model GP26 
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Table 6.A.7   Feature importance of the model GP24 

 

Feature Rank Importance
ICP median minutes [230 to 240] 1st 0.00608
ICP median minutes [210 to 240] 2nd 0.00272
ICP median minutes [210 to 220] 3rd 0.00179
ICP median minutes [220 to 230] 4th 0.00167
ICP median minutes [180 to 240] 5th 0.00166
ICP 5th largest Fourier coefficient 6th 0.00158
ICP SD minutes [40 to 50] 7th 0.00140
Number of events of ICP dose in the red-subarea 8th 0.00135
ICP median minutes [170 to 180] 9th 0.00133
ICP SD minutes [120 to 180] 10th 0.00114
ICP median minutes [180 to 210] 11th 0.00110
ICP SD minutes [150 to 180] 12th 0.00103
LAx median minutes [180 to 240] 13th 0.00101
MAP median minutes [220 to 230] 14th 0.00097
MAP SD minutes [230 to 240] 15th 0.00096
ICP median minutes [120 to 180] 16th 0.00094
MAP SD minutes [40 to 50] 17th 0.00092
ICP SD minutes [60 to 90] 18th 0.00088
ICP 4th cepstrum coefficient 19th 0.00086
ICP median minutes [120 to 150] 20th 0.00085
ICP SD minutes [100 to 110] 21st 0.00085
ICP median minutes [110 to 120] 22nd 0.00084
ICP SD minutes [130 to 140] 23rd 0.00084
LAx SD minutes [170 to 180] 24th 0.00083
LAx SD minutes [120 to 150] 25th 0.00083
Presence events of ICP dose in the red-subarea 26th 0.00082
ICP SD minutes [180 to 190] 27th 0.00082
LAx median minutes [200 to 210] 28th 0.00082
ICP 1st largest Fourier coefficient 29th 0.00080
ICP SD minutes [50 to 60] 30th 0.00075
ICP SD minutes [120 to 130] 31st 0.00072
ICP median minutes [130 to 140] 32nd 0.00070
ICP SD minutes [210 to 220] 33rd 0.00069
ICP SD minutes [60 to 70] 34th 0.00068
ICP median minutes [150 to 180] 35th 0.00067
ICP 3rd cepstrum coefficient 36th 0.00065
LAx 5th cepstrum coefficient 37th 0.00058
ICP median minutes [140 to 150] 38th 0.00053
ICP median minutes [60 to 90] 39th 0.00051
ICP SD minutes [30 to 60] 40th 0.00050
ICP SD minutes [170 to 180] 41st 0.00042
ICP SD minutes [20 to 30] 42nd 0.00035
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Table 6.A.8   Feature importance of the model GP22 
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Table 6.A.9   Feature importance of the model GP20 
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Table 6.A.10   Feature importance of the model GP18 
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Table 6.A.11   Feature importance of the model GP15 
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6.A.4   Performance of the RFred model for the prediction of the red area 

The development cohort included 6959 events of ICP dose in the red area 
and 13979 randomly selected events in the blue area. Patients experienced 
on average a median [IQR] number of events of ICP dose in the red area of 
7 [0 - 30]. In addition, they experienced a median [IQR] percentage of 
monitoring time spent in the red area of 8 [0-36], against a median [IQR] 
percentage of monitoring time spent with an ICP above 22 mmHg of 1 [0-
6]. 

The model presented on the 10 folds CV internal validation sub-sets a mean 
(SD) AUC of 0·92 (0·02), a mean (SD) AP of 0·87 (0·03), a mean (SD) 
accuracy of 0·86 (0·02), a mean (SD) precision of 0·81 (0·04), a mean (SD) 
sensitivity of 0·76 (0·04), a mean (SD) specificity of 0·91 (0·02). The mean 
(SD) calibration-in-the-large and the mean (SD) calibration slope were 
respectively equal to 0·01 (0·06) and 0·92 (0·02). Visually, the RFred model 
presented good calibration (despite a p-value < 0·01) and superior clinical 
utility as co
6.A.1.  
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Figure 6.A.1  Performance metrics of the RFred model for the prediction of the 
red area on the development dataset. Panel A) calibration curve. Panel B) decision 
curve, for this model intervention may indicate the need of additional clinical 
evaluation. Panel C) violin plots of the predicted probabilities of an event in the red 
area or a not an event in relationship with the true labels. In the plot, the 
distributions of the probability scores of the false positive, true positive, true 
negatives and false negatives predictions are displayed.
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6.A.5   Calibration and decision curves of the GPx models

Figure 6.A.2 below shows the calibration and decision curves of the GPx models when 
extracted on the development and on the CENTER-TBI dataset.

Figure 6.A.2 (part I)   Calibrations and decision curves of the models GP34 and 
GP28 for the development and CENTER-TBI (external validation) cohorts.
Calibration curves are displayed in the left column while decision curves on the right 
columns. The p-value for calibration is reported in each graph of calibration.
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Figure 6.A.2 (part II)   Calibrations and decision curves of the models GP26 and 
GP24 for the development and CENTER-TBI (external validation) cohorts. 
Calibration curves are displayed in the left column while decision curves on the right 
columns. The p-value for calibration is reported in each graph of calibration.
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Figure 6.A.2 (part III)  Calibrations and decision curves of the models GP22 and 
GP20 for the development and CENTER-TBI (external validation) cohorts. 
Calibration curves are displayed in the left column while decision curves on the right 
columns. The p-value for calibration is reported in each graph of calibration.
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Figure 6.A.2 (part IV)   Calibrations and decision curves of the models GP18 and 
GP15 for the development and CENTER-TBI (external validation) cohorts. 
Calibration curves are displayed in the left column while decision curves on the right 
columns. The p-value for calibration is reported in each graph of calibration.
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6.A.6   Performance of the model for different forewarning windows 

As an exploratory analysis we tested the performance of the model on the 
CENTER-TBI dataset (external validation dataset) when using different 
forewarning windows. In details, we tested the forewarning time of 5 
minutes, 15 minutes, 45 minutes and 60 minutes. This exploratory analysis 
is hypothesis generating and could help to understand the performance of 
the model when used in a real time setting, where a strict forewarning time 
of 30 minutes may not apply. 

Table 6.A.12 reports the performance of the model when tested for different 
forewarning windows. To facilitate the comparison, the Table 6.A.11 also 
reports the performance of the model for the prediction of the red area with 
a 30 minutes forewarning window (reference model presented in the main 
manuscript). 

Table 6.A.12  Performance of the model when tested for different 
forewarning windows. 

FOREWARNING 
WINDOW 

AUC AP ACCURACY PRECISION SENSITIVITY SPECIFICITY 

5 minutes 0.94 0.91 0.89 0.86 0.79 0.94 

15 minutes 0.94 0.88 0.89 0.82 0.78 0.93 

30 minutes 0·94 0·89 0·88 0·85 0·77 0·93 

45 minutes 0.93 0.89 0.88 0.85 0.77 0.93 

60 minutes 0.93 0.89 0.88 0.85 0.76 0.93 
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ABSTRACT 

 

OBJECTIVE:   To develop a new decision-support software prototype for the 
management of intracranial hypertension in patients with severe traumatic brain 
injury (TBI) and to test such prototype at the bedside in a blinded mode. The 
software displays prediction of future events of elevated intracranial pressure (ICP) 
that could be potentially dangerous for the patient as well as results of previous 
research that could provide useful information to the clinicians. 

APPROACH:   We developed a prototype software for the management of patients 
with TBI in close collaboration with nurses and clinicians of the intensive care unit 
(ICU) of the University Hospitals of Leuven (UZ Leuven). We tested the functioning 
of the prototype in a real-time clinical setting in an observational technical 
validation. The study was performed in the ICU of Leuven between January 2020 
and April 2021. Software defects that arose during the real-time use of the model 
were detected and solved, where possible. 

MAIN RESULTS:  The user interface of the software contains information that is 
potentially useful for the management of patients with TBI. During the technical 
validation we tested the software on 35 patients with continuous ICP monitoring. 
More that 450 tests on the correct functioning of the software were executed. Six 
software defects were identified and 5 of them were correctly solved. 

SIGNIFICANCE: We developed a prototype software that could potentially support 
clinicians during the management of patients with TBI. The novelty of the software 
lies in the displayed predictions and metrics, which are potentially relevant in the 
clinical evaluation of patients with TBI, although not yet available at the bedside. 
The developed software could be used in future interventional studies that aim to 
assess the impact of recent results of TBI research on patients outcomes. 
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7.1   INTRODUCTION 

In a neuro-intensive care unit (NICU), monitoring and treatment of 
intracranial pressure (ICP) is a key aspect in the management of patients 
with severe traumatic brain injury (TBI) [1]. Increased ICP levels are 
frequent after TBI and can lead to secondary brain damage (SBI) or 
death [1, 2]. To prevent SBI due to elevated ICP, current recommendations 
suggest to start aggressive treatment when the ICP rises above 22 
mmHg [3]. However, a threshold-based approach may not deliver optimal 
management. The use of a universal threshold that is applied to every 
patient regardless of their clinical status and personal needs, may lead to 
missed treatment opportunities, or it may even trigger a too early 
administration of aggressive treatments, exposing the patient to unjustified 
risk. 

consideration the intensity and the duration of an ICP event [4], may better 
quantify the neurological burden related to elevated ICP. The association 
between the time-intensity ICP and outcomes was visualized by Güiza et 
al. [5] see Figure 7.1 panel A, and replicated in other two studies [6, 7]. The 
plot shows two distinct regions of ICP doses that are associated with good 
and poor long-term neurological outcomes. Specifically, the region in blue 
indicates ICP doses that occur more frequently in patients with better long-
term outcomes, while the region in red indicates ICP doses that occur more 
frequently in patients with worse long term outcomes. Although the concept 
of ICP dose provides new insights on the burden of ICP in severe TBI and 
could potentially promote a more appropriate treatment for elevated ICP, 
until now no tool was available in the clinic to display this information.  

Early warnings of potentially harmful episodes of ICP could result in a more 
appropriate and timely treatment of elevated ICP. For this purpose, Güiza 
et al. [8] developed a machine learning (ML) model for the prediction of 
extremely elevated ICP [9]. The model predicted with a 30 minutes 
forewarning events of ICP>30 mmHg that lasted more than 10 minutes. In 
a following study from Carra et al. (Chapter 6), this initial model was later 
integrated in a ML model that predicted with 30 minutes forewarning a 
larger set of episodes of ICP doses associated with poor outcomes, i.e. the 
red area of the visualization of Güiza et al.[5]. Both models base their 
predictions on continuous ICP and mean arterial blood pressure (MAP) 
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traces. The integration of such models at the bedside may have a positive 
effect on quality of care and patient outcomes. 

Cerebrovascular autoregulation (CAR) represents the capacity of the brain 
to adjust the cerebral vessel resistance in response to changes in arterial 
blood pressure or cerebral perfusion, in order to ensure constant cerebral 
blood flow. In TBI, CAR is often disturbed, affecting the capacity of the 
brain to tolerate elevated ICP. A validated method to assess CAR is still 
missing, but CAR can be quantified with computation indexes such as the 
Pressure Reactivity index (PRx) [10] or the low-frequency autoregulatory 
index (LAx) [11], which can be extracted from the ICP and MAP signals. In 
a previous study, Flechet et al. [12] used the visualization method proposed 
by Güiza et al. [5] to display the association between doses of LAx and 
outcomes, see Figure 7.1 panel B. The study from Flechet et al. [12] 
demonstrated that also duration and intensity of LAx plays a role in the 
definition of the long-term neurocognitive outcomes of patients with TBI. 
No information about the CAR status of the patients is commercially 
available in the clinic. Only some specific research centers have access to 
continuous CAR status via a tool exclusively for research purposes (ICM+, 
Cambridge Enterprise Ltd., UK). 

In order to assess the impact of the ICP dose and CAR dose visualizations 
on patient outcomes, it is important to develop bedside research tools that 
implement these results and display them in a relevant and interpretable 
fashion. These tools need to be robust and reliable and need to easily 
integrate with the clinical setting. 

Specific goals of this study were 1) the design and implementation of a 
bedside software that integrates previous research on TBI in a unique 
bedside tool, and therefore provides to nurses and clinicians new 
information for the management of patients; 2) the design of a user friendly 
and interpretable interface in collaboration with nurses and clinicians; and 
3) the technical validation of the software in a prospective observational 
study. The technical validation aims at detecting and correcting software 
defects that could rise during the use of the prototype software in real-time. 
Part of the data collected in this study were also used to assess the real-time 
performance of the prediction model for harmful ICP doses. The results of 
this performance analysis are reported separately in Chapter 8. 
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Figure 7.1   Visualization of the association between dose episodes and long-term 
neurological outcomes. Panel A) Visualization of the association between doses of 
ICP and long-term neurological outcomes. The red area indicates doses of ICP that 
occur more frequently in patients with poor long-term outcomes. The blue area 
indicates doses of ICP that occur more frequently in patients with better long-term 
outcomes. Panel B) Visualization of the association between doses of LAx and long-
term neurological outcomes. Similarly, the red and blue areas indicate doses of LAx 
that occur more frequently in patients with poor and better long-term outcomes, 
respectively. Reproduced with permission from Güiz
and time burden of intracranial hypertension in adult and paediatric traumatic 

Autoregulation Insults and Their Association with Outcome in Adult and Paediatric 

7.2   METHODS

7.2.1   Study population

The technical validation study was performed in the intensive care unit 
(ICU) of the University Hospitals UZ Leuven, Belgium, between January 
2020 and April 2021 and included all patients that underwent intra-
parenchymal ICP monitoring. Inclusion was not strictly limited to patients 
with TBI given the technical nature of the study. For the same reason, we 
did not perform a formal sample size calculation. Patients that were 
subjected to a therapy restriction code at the moment of screening were 
excluded from the study. During the technical validation the software was 
running in a blinded mode, therefore the standard clinical management of 
patients was not affected. The medical ethics committee of the University 
Hospitals UZ Leuven, Belgium approved this study. Patients and/or their 
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families were informed about the prospective collection of data though an 
information document. 

 

7.2.2   Software development 

The prototype software was called TB-
-AI was to 

implement 3 main sources of information from previous research on TBI 
that are not currently available at the bedside but could be potentially useful 
for the management of patients. Namely: 

 Predictions of potentially harmful ICP elevations 
 The LAx as a computational index of CAR  
 Visualization of the real-time time-intensity burden of ICP and LAx 

Each of these metrics is computed and displayed on a minute-by-minute 
basis. The TB-AI software was developed in Python (version 3.5, 
https://www.python.org/) with the Kivy library (version 1.10, 
https://kivy.org/#home) and it was based on a Model-View-Controller 
(MVC) architectural pattern, which separates the application into three 
main logical components: the model, the view and the controller. Each of 
these logical components handles a specific function of the application. For 
more information on the software architecture, see Appendix 7.A.1. 

For practical reasons, the technical validation was performed by 
implementing the prediction model of Güiza et al. [8] for the prediction of 
ICP above 30 mmHg for more than 10 minutes. However, due to the MVC 
architecture this model is perfectly interchangeable with the model 
proposed by Carra et al. (Chapter 6) for the prediction of harmful ICP doses 
(given that input and output types are the same). 

In the intensive care unit (ICU) of UZ Leuven, data of the patients are stored 
in the Patient Data Management System (PDMS) (MetaVision, iMD-Soft, 
Needham, MA,USA). The PDMS collects several clinical data of the 
patients, such as demographics, laboratory tests analysis, imaging data, 
notes from the clinical evaluations of the patient, treatment information 
and continuous monitoring data, which are stored on a minute-by-minute 
basis. Data are stored in a structured query language (SQL) database, which 
allows to handle big datasets of different data type with ease. The TB-AI 
software is connected to the UZ Leuven hospital network and it queries 



 

171 
 

through an encrypted connection the necessary data, i.e. continuous ICP 
and MAP signals, directly from the PDMS. This architecture allows the TB-
AI software to process real-time minute-by-minute data of the patient. This 
is also a flexible architecture that is not monitor-dependent and that can be 
easily transferred to other hospitals that have an electronic health records 
management system in place. Moreover, to meet the safety regulations of 
the hospital an access log (record of all the actions done by each user) had 
to be implemented. In addition, access to the software could be done only 
by personal password. 

7.2.3   Technical validation 

The technical validation aimed at identifying software defects that could 
arise during the use of the software in a real-time clinical setting. Software 
defects were identified by performing the following tests at random 
moments every 2/3 monitoring days:  

 Test on the correct acquisition and storage of the monitoring data 
 Test on the computation of the LAx  
 Test on the computation of the ICP predictions 
 Test on the computation of the ICP statistics 
 Test on the correct real-time visualization of the ICP and LAx 

burden plots 
 Test on computational delays (for example potential delays in the 

computation of metrics, or visualization delays) 

These tests aimed at identifying, among others, potential computational 
and visualization errors or errors in the acquisition or storage of data. For 
each identified software defects a defect report was completed, a solution 
was proposed, where possible, and the software was iteratively re-tested at 
the bedside. 

7.2.4   User interface 

The user interface (UI) of the software was designed in close collaboration 
with research nurses and clinicians of the ICU of UZ Leuven. In detail, we 
organized 3 meetings in which we presented the UI to a group of 6 nurses 
and clinicians and then we iteratively improved it based on their comments 
and suggestions.  
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7.3   RESULTS 

7.3.1   Technical validation 

Thirty-six patients with invasive intra-parenchymal ICP monitoring were 
included in this study, of which 14 patients had severe TBI, 11 patients had 
intracerebral hemorrhage, 6 patients had sub-arachnoid hemorrhage, 4 
patients had meningitis and 1 patient had invasive ICP monitoring as a 
result of a brain tumor. Patients underwent invasive ICP monitoring for 
median [IQR] 7 [5-10] days. 

During the technical validation, we performed more than 450 tests on the 
technical functioning of the model. Of these tests, 6 identified a software 
defect. A summary of the software defects is reported in Appendix 7.A.2. 
Importantly, no defects related to time delays or prediction calculation and 
visualization were identified. Moreover, the only defects that could not be 
solved concerned connection interruptions between the software and the 
PMDS. These interruptions occur during the weekly safety updates of the 
PDMS. Given that it was an error related to the hospital safety it could not 
be solved. Five times the software was interrupted due to human error, the 
interface was modified in order to minimize such problems. 

 

7.3.2   User interface 

The final version of the TBI-AI software UI presents three main screens: the 
home screen, the monitoring signals screen and the ICP and LAx burden 
visualization screen. Each screen is the result of a close collaboration with 
nurses and clinicians. Figure 7.2 shows a comparison between the initial UI 
of the TB-AI software, prior to any feedback session, and the final UI. 

The home screen is divided into three panels. In the top panel, the 
predictions of harmful ICP events are displayed in a color-coded fashion. 
Red colors indicate higher probabilities of future ICP elevations while blue 
colors indicates lower probabilities of elevated ICP. In the middle panel, 
continuous traces of ICP and LAx are displayed. The bottom-left panel 
displays the percentage of time that the patients spent in the red area. It is 
possible to select the window of time in which this metric is computed 
among the following options: last 4 hours of monitoring, last 24 hours of 
monitoring or entire length of monitoring (LOM). The bottom-right panel 
displays the percentage of monitoring time that the patient spent with an 
ICP above a certain threshold, which can be chosen by the user among the 
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options of 20 mmHg, 25 mmHg or 30 mmHg. This metric can be similarly 
computed for different windows of time, i.e. last 4 hours of monitoring time, 
last 24 hours of monitoring time or entire LOM. All metrics are computed 
in real time and updated each minute. A zoomed version of Figure 1 panel 
B can be found in Appendix 7.A.3 (Figure 7.A.2).  

The monitoring signals screen shows continuous minute-by-minute traces 
of relevant physiological signals for the management of patients with TBI. 
In detail, the screen shows the following signals: ICP, LAx, MAP, end-tidal 
CO2 and the brain tissue oxygen (PbtO2). This screen was not part of the 
initial design of the UI, but its importance was stressed during the feedback 
sessions. A zoomed version of Figure 1 panel C can be found in Appendix 
7.A.3 (Figure 7.A.3).  

The ICP and LAx burden visualization screen shows the real-time 
visualization plots of the experienced dose of ICP and LAx in relations with 
long-term outcomes. In detail, the left panel displays the real-time 
visualization of the ICP burden. The current ICP dose is plotted in vivid 
colors, while the cumulative ICP burden of the previous monitoring time, 
i.e. the worst ICP burden dose experienced by the patient, is plotted with 
more transparent colors. In the bottom left corner of the screen the 
per
visualization is displayed. The user can choose to have this percentage 
computed for different time windows, respectively for the past 4 hours, 24 
hours or the LOM. In the right panel the real-time visualization of the LAx 
burden is displayed. The visualization follows the same principles of the ICP 
burden visualization plots explained before. Similarly to the left panel, the 
bottom right panel shows the percentage of time spent by the patient with 

percentage can be computed for different time windows. A zoomed version 
of Figure 1 panel D can be found in Appendix 7.A.3 (Figure 7.A.4).  
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Figure 7.2   User Interface (UI) of the TB-AI software. Panel A initial UI of the 
software. This UI was used as starting point to integrate the suggestions and 
feedback of a group of 6 nurses and clinicians of the intensive care unit of UZ 
Leuven. Panel B, C and D show the final UI, which integrates the feedback obtained 
by the clinical personnel. In detail, panel B) home screen of the TBI-AI software, it 
shows the predictions of impending events of harmful intracranial pressure (ICP) 
so as relevant summary statistics on the current and previous ICP burden. Panel C) 
monitoring signals screen, it displays minute-by-minute traces of relevant 
physiological signals. Panel D) ICP and low-frequency autoregulatory index (LAx) 
burden visualization screen, it displays the visualization plots of the ICP and LAx 
burden, it also displays relevant metrics on the monitoring time that was spent by 
the patient with ICP or LAx in the red area of the visualization plots of Güiza et al. [5]
and Flechet et al. [12].

7.4   DISCUSSION

Current management of severe TBI relies on a threshold-based approach, 
with several limitations. A redefinition of the type of elevated ICP events 
that might incur in harm and the reevaluation of ICP management towards 
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research has taken multiple steps in this direction, but none of the past 
research results is currently available at the bedside in a clinical tool. 

In this study, we developed and validated a prototype software for the 
management of patients with TBI. The TB-AI prototype software displays 
potentially useful information not yet available at the bedside. This 
prototype may represent a valuable research tool to assess whether the use 
at the bedside of the concept of dose of ICP, continuous predictions of 
harmful ICP events or the LAx as an index of CAR may have an effect on 
management and outcomes in patients with TBI.  

When developing tools for the use at the bedside, interdisciplinarity is key. 
Importantly, the UI of the software was designed in close collaboration 
between nurses and clinicians, with the objective of designing an 
interpretable tool that displays information in a clinically relevant fashion. 
Further assessment of the information displayed in the software needs to 
be performed once the software is used in clinical practice. During bedside 
use, unforeseen situations may arise for which the computation of 
additional metrics may be of interest. For example, in patients that undergo 
surgery for mass evacuation it may be of interest to re-start the computation 
of some metrics in relation to the moment of surgery. Moreover, additional 
tests on software usability need to be performed when the software is used 
in a non-blinded mode. 

The developed prototype was tested in a clinical setting demonstrating its 
ability to compute the displayed metrics in real time. In addition, during 
the clinical test we investigated the correct functioning of the software and 
identified and solved 6 software defects. This technical validation 
guarantees accuracy and establishes the software as a reliable tool that 
could be used for a future prospective interventional study. Moreover, the 
technical validation provided us with valuable insights on the technical 
challenges that can be encountered when bringing a ML model to the 
bedside. Most of these technical challenges were related to the 
implementation and/or interaction with the network and software safety 
measures required by the local hospital. Open collaboration with the 
information technology (IT) department of the hospital is extremely 
important to solve or avoid these problems, therefore it is suggested to 
involve the IT department of the local hospitals from the very first phases 
of software design.  
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This prototype software provides additional information for the 
management of TBI, but potential changes in patient therapy remain at 
discretion of the clinician. In addition, it is important that clinicians are 
aware of the methodology behind the computation of the displayed 
information for a correct interpretation of the displayed results.  

7.5   CONCLUSIONS 

In this study we have developed and validated in a real clinical setting a 
prototype software for the management of patients with severe TBI. The 
software displays relevant metrics and information not currently available 
in the clinic and as such it could provide valuable additional information 
for the treatment of patients with severe TBI. The software could be a useful 
tool for setting up a future interventional study that assesses the positive 
impact of recent research results on patients management and outcomes. 
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7.A APPENDIX
7.A.1   Model-View-Controller architecture

The Model-View-Controller (MVC) architectural pattern separates the 
application into three main logical components: the model, the view and 
the controller. Each of these logical components handles a specific function 
of the application: the model is the computational and data-related logic of 
the application, it executes the main operations of the application and it is 
involved in the storing and querying of the data. The view is the user 
interface (UI) logic of the application, it executes the operations able to 
visualize in an interpretable way the results and functionalities of the 
application. It handles the visual communication between the user of the 
application and the underneath logical components. Finally the controller, 
it is the liaison between the model and the view, the controller is the brain 
of the MVC pattern application, it processes the user inputs and gives 
instructions to the other logical components (model and view) on which 
operations to execute. Figure 7.A.1 represents a schematic representation 
of a MVC architecture. The use of a MVC architectural pattern has several 
benefits: it allows parallel development, it makes the application more 
robust to changes to the code, its flexibility allows to use multiple view 
logics for a same application.

Figure 7.A.1 Example of MVC architecture. The user sees the interface of the 
application though the view logic and interacts with the application through the 
controller. The controller sends instructions to the model, which afterwards sends 
the results back to the controller. The controller might update the interface of the 
application by sending instructions to the view logic.
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7.A.2   Supplemental table 

 
Table 7.A.1 Report of software defects and corresponding solution 

SOFTWARE 
DEFECT 

DESCRIPTION SUCCESSFUL 
SOLUTION 

UPGRADED 
TB-AI 
VERSION 

1 Software defect that 
occurs when the 
software is re-
initialized. 

YES.   A new condition is 
implemented, if the study 
ID of the patient already 
exists in the database, the 
software does not create a 
new patient file. 

1.1 

2 PDMS exception. The 
software lost 
connection with the 
PDMS server 

NO.   The error is due to 
recurrent local updates of 
the PDMS software. When 
the updates are installed on 
the PDMS server the 
connection is interrupted. 
External problem related 
to the security protocol of 
the local PDMS, not 
solvable.  

-- 

3 ICP and MAP were not 
correctly stored 

YES.   Software defect on 
data storage is solved. 

1.2 

4 Real-time ICP and LAx 
burden  plot 
visualization error. 
Color scales are 
normalized, and 
therefore they change 
in relation to the 
maximum value to 
plot.

YES.   Software defect on 
data visualization is 
solved. The range of 
plotted values is fixed 
across patients. 

1.3 

5 PDMS exception. The 
PDMS firewall blocks 
the software 

YES.   A new update of the 
PDMS firewall blocks the 
TB-AI software from 
connecting to the server. 
The problem was solved by 
changing the encryption 
used for the connection. 

1.4 

6 Software defects that 
occur when MAP is 
not measured 

YES.  A new condition is 
implemented in case the 
ICP signal is measured but 
the MAP is not (due to 
PMDS storage problems) 

1.5 
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7.A.3   Supplemental Figures 

 

 

Figure 7.A.2 Home screen user interface of the TB-AI prototype software. Top 
panel: the prediction of upcoming events of elevated intracranial pressure (ICP) is 
displayed in a color-coded fashion. The settings of the color-coded visualization can 
be changed by the user by clicking on the setting wheel in the bottom right corner 
of the box. Central panel: the continuous minute-by-minute trace of ICP and low-
frequency regulatory index (LAx, quantitative index of cerebrovascular 
autoregulation) are displayed. The LAx is computed every minute from the 
continuous ICP and mean arterial blood pressure signal (MAP). Bottom-left panel: 
percentage of time the patients spent in the red area. It is possible to select the 
window of time in which this metric is computed among the following options: last 
4 hours of monitoring, last 24 hours of monitoring or entire length of monitoring 
(LOM). Bottom-right panel: displays the percentage of monitoring time the patient 
spent with an ICP above a certain threshold, which can be chosen by the user among 
the options of 20 mmHg, 25 mmHg or 30mmHg. This metric can be similarly 
computed for different windows of time, i.e. last 4 hours of monitoring time, last 24 
hours of monitoring time or entire LOM.  All metrics are computed in real time and 
updated each minute. 
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Figure 7.A.3 Monitoring signals screen user interface of the TB-AI software. The 
screen shows continuous minute-by-minute traces of relevant physiological signals 
for the management of patients with TBI. In detail, the screen shows: intracranial 
pressure (ICP), low-frequency regulatory index (LAx), mean arterial blood pressure 
(MAP), end-tidal CO2 and the partial brain tissue oxygen saturation (PbtO2). The 
LAx signals is continuously calculated by the software, in fact this relevant 
continuous metric is not available yet at the bedside nor in the PDMS of UZ Leuven. 
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Figure 7.A.4  Intracranial pressure (ICP) and low-frequency autoregulatory index 
(LAx) burden visualization screen user interface of the TB-AI software. Left panel: 
real-time visualization graph of the ICP burden. The current ICP burden dose is 
plotted in vivid colors, where the cumulative ICP burden of the previous monitoring 
time, i.e. the worst ICP burden dose experienced by the patient, is plotted with more 
transparent colors. In the bottom left corner of the screen the percentage of time 

The user can choose to have this percentage computed for different time windows, 
respectively for the past 4 hours, 24 hours or  the entire length of monitoring (LOM). 
Right panel: real-time visualization of the LAx burden. The visualization follows the 
same principles of the ICP burden visualization plots explained before. Similarly to 
the left panel, the bottom right panel shows the percentage of time spent by the 

percentage can be computed for different time windows. 
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ABSTRACT 

OBJECTIVE:   To assess the performance of a prediction model for harmful 
doses of intracranial pressure (ICP) in patients with severe traumatic brain 
injury (TBI) in a real-time clinical setting.  

APPROACH:   Patients with severe TBI and invasive ICP monitoring were 
included in a single-center prospective observational study. Minute-by-
minute ICP and mean arterial blood pressure signals were collected in 
addition to clinical and demographic data. Afterwards, we computed the 
continuous predictions of the model and assessed the model performance 
with respect to area under the receiver operating characteristic (AUC), area 
under the precision-recall curve (AP), accuracy, precision, sensitivity and 
specificity. In addition, we assessed the clinical usefulness of the model with 
decision curve analysis. Last, we computed the level of technology readiness 
(TRL) for bedside implementation.  

MAIN RESULTS:   Fourteen patients with severe TBI were included in this 
prospective study, with a continuous monitoring time of 5 [IQR 3-10] days. 
The model presented an AUC of 0.92, AP of 0.76, accuracy of 0.87, precision 
of 0.68, sensitivity of 0.69 and specificity of 0.91 (alerting threshold= 0.50). 
The model presented calibration slope of 0.69 and a calibration-in-the-
large of 0.05 (p-value < 0.01). Clinical usefulness was demonstrated for the 
risk thresholds [0.09-0.65]. With this study, the model achieved a TRL = 6.  

SIGNIFICANCE:   In a clinical setting with real-time continuous data, the 
model demonstrated excellent discrimination and specificity, good 
calibration and clinical usefulness for a broad range of risk thresholds. In a 
real-time clinical setting, the high specificity of the model, at a cost of a 
lower sensitivity, is to be preferred in light of potential alert fatigue. The 
results indicate that the model has a sufficiently high TRL for a future 
interventional study to assess the impact of its use at the bedside on patient 
management, and on short and long-term outcomes. 
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8   INTRODUCTION 

Abnormally elevated intracranial pressure (ICP) occurs in approximately 
60% of patients with severe traumatic brain injury (TBI) [1, 2], and it is 
associated with increased mortality and worse neurological outcomes [3].  

Treatment and prevention of elevated ICP are key aspects in the 
management of TBI. Current guidelines recommend the use of aggressive 
treatments when the ICP crosses the fixed threshold of 22 mmHg [4]. 
However, brief ICP elevations above a fixed threshold might not always 
result in brain damage and the ability of the patient to tolerate intracranial 
hypertension may vary according to age, sex or cerebrovascular 
autoregulation status, among others. As such, a universal ICP threshold, 
which applies to all patients, in every situation, is too simplistic, especially 
considering that this threshold was derived from a single center 
epidemiological study that found the highest association with outcome at 
22 mmHg [5]. An epidemiological association should not be confounded 
with a treatment threshold.  

Several studies have demonstrated that the duration of these events plays a 
crucial role in the definition of harmful ICP events [6, 7]. The concept of 

ICP [6], and as such it integrates a second dimension, that is time, in the 
evaluation of the danger of elevated ICP. Elevated doses of ICP have been 
associated with worse neurological outcomes and increased mortality [7
11] and in one single-center study the ICP dose presented a stronger 
association with outcomes than time-point ICP values above a fixed 
threshold [9]. Güiza et al. [7] displayed the association between intensity 
and duration of an ICP event and long-term outcomes in a color-coded plot. 
In the plot, ICP doses that are represented in blue occur more frequently in 
patients with better long-term outcomes, while ICP doses that are 
represented in red occur more frequently in patients with worse long-term 
outcomes. The blue and red regions are clearly divided by an exponential 
line. Despite having demonstrated clinical value in several studies [6 11], 
the concept of ICP dose is not currently used in clinical practice and 
currently only one monitor (only recently) available in the market displays 
information about the ICP dose, although in a limited form.  

However, it is challenging to identify the early signs of an ICP event whose 
combination of intensity and duration may be harmful for the patient. For 
this reason, in a previous study we developed a machine learning (ML) 
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model for the early prediction of events of ICP whose doses have been 
associated with poor neurological outcomes in several epidemiological 
studies (see Chapter 6). The model processes minute-by-minute ICP and 
mean arterial blood pressure (MAP) to provide with 30 minutes 
forewarning alerts on the future occurrence of ICP doses belonging to the 
red area of the visualization of Güiza et al. [7]. The model was developed on 
a large multi-center dataset [12] and demonstrated good performance when 
validated on the Collaborative European NeuroTrauma Effectiveness 
Research in Traumatic Brain Injury (CENTER-TBI) dataset [13], a large, 
European, prospectively collected, multicenter dataset of patients with TBI. 
On the CENTER-TBI the model had AUC = 0.94, AP = 0.89, accuracy = 
0.89, precision = 0.79, sensitivity = 0.77 and specificity = 0.93 (alerting 
threshold = 0.5). Although this model presents good performance when 
evaluated on the development and external validation dataset, there is no 
evidence that its use at the bedside would improve clinical practice and 
potentially affect outcomes.  

The prospective evaluation of the model performance on a real clinical 
setting is an important step for the future integration of the model at the 

outcomes. This step is important to improve the level of technology 
readiness (TRL) of the model [14], but challenging because of technical and 
regulatory reasons. Recently, Fleuren et al. [14]  proposed a grading scale 
for clinical readiness of ML models. The scale ranges from a minimum of 
TRL = 1 (identification of the clinical problem), to a maximum of TRL = 9 
(model integration in the clinical workflow as safe and accurate medical 
device). The authors found that only 2% of the 160 reviewed articles scored 
level 6 or above [14]. Similarly, a recent systematic review from van de 
Sande et al. [15] showed that of 441 studies involving the development of 
ML models on ICU data only 8 (1.6%) prospectively tested the model in a 
clinical setting.  

In this descriptive study, we set up a prospective, observational, single-
center study to obtain an assessment of the real-time performance of the 
model for the prediction of harmful ICP doses. Moreover, we will assess the 
TRL of the model for what concerns clinical implementation. 
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8.2   METHODS 

8.2.1   Study population 

This prospective observational study included patients with severe TBI that 
were admitted in the intensive care unit (ICU) of the University Hospitals 
UZ Leuven (UZ Leuven), Belgium, between January 2020 and April 2021. 
Given the exploratory nature of the study, we did not perform a sample size 
calculation, but we aimed at enrolling at least 10 patients. Patients were 
declared eligible for inclusion if they underwent invasive intra-
parenchymal ICP monitoring and if they were not subjected to a therapy 
restriction code at the moment of inclusion. The medical ethics committee 
of the University Hospitals UZ Leuven, Belgium approved this study. Use 
of informed consent was waived, but the patients and/or their families were 
informed about the prospective collection of data though written 
communication.  

8.2.2   Prospective study  

During the prospective study the following demographic and clinical data 
were collected: age, sex, Marshall score at admission, minute-by-minute 
ICP and MAP signals, worse daily Treatment Intensity Level [16] (TIL, 
which ranges from a minimum of 1 to a maximum of 38), Glasgow Coma 
Scale (GCS) at the start and the end of the ICP monitoring.  
 
Minute-by-minute ICP and MAP signals where prospectively collected 
(minute-by-minute collection and storage) by a prototype bedside software 
that queried data from the local Patient Data Management System (PDMS, 
MetaVision®; iMD-Soft®, Needham, MA, USA) of UZ Leuven. The blinded 
software was initiated after start of ICP monitoring and it was stopped after 
ICP monitoring completion. The use of the bedside software for the 
collection of data allows to obtain minute-by-minute signals collected in a 
real clinical setting and therefore mimic the use of the model at the bedside. 
Continuous predictions were computed from the minute-by-minute ICP 
and MAP signals that were prospectively collected at the bedside.  
 

8.2.3   Model external validation and assessment of the real-time 

performance 

-
continuous (minute-by-minute) predictions, see Figure 8.1 for an example. 
Additional examples of continuous predictions can be found in Appendix 
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8.A.1. The evaluation of the performance of the model on continuous ICP 
sequences provides a better estimate of the error of the model when used in 
clinical practice.  

Model performance was assessed according to the original study (Chapter 
6) and computed for the entire population. In details, we computed the area 
under the receiving characteristic curve (AUC), area under the precision 
recall curve (AP), accuracy, precision, sensitivity, and specificity. 
Calibration was assessed by plotting calibration plots, and by computing the 
calibration slope and calibration-in-the-large, while clinical importance 
was assessed with decision curves. Decision curve analysis compares the 
clinical usefulness of the prediction as an alerting tool with the clinical 

t. 

To investigate the changes in performance as a result of different alerting 
thresholds, threshold-dependent performance metrics, i.e. accuracy, 
precision, sensitivity, and specificity, were computed for different 
scenarios. In particular: a) we used an alerting threshold of 0.5 in 
accordance with the study presented in Chapter 6; b) we used as alerting 
threshold the optimal threshold as identified from the receiving 
characteristic curve;  

The TRL of the model for clinical implementation was assessed according 
to the grading scale proposed by Fleuren et al. [14]. 

Statistical analysis was performed in Python (version 3.5, 
https://www.python.org) with the following libraries: numpy (version 1.15, 
https://numpy.org/) and scipy (version 0.20, https://www.scipy.org/). 
Calibration curves were generated with the R-based library givitiR (version 
1.3, https://CRAN.R-project.org/package=givitiR).
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8.3   RESULTS 

8.3.1   ICP characterization 

Fourteen patients with severe TBI were included in the study. Patients had 
an age at admission of 55 years [IQR 32-58], a Marshall score at ICU 
admission of 2 [IQR 2-4], a GCS at study admission of 7 [IQR 5-9] and a 
GCS at study end of 9 [IQR 3-10]. Eighty-five percent of patients were male 
and their average daily TIL was 7.5 [IQR 6.0  9.0]. Patients experienced a 
percentage of monitoring time in the red area of 15% [IQR 0-42%] for a 
total of 5 [IQR 3-10] monitoring days. Three patients did not experience 

in Table 8.1. 

 

 

 

Table 8.1    

VARIABLE VALUE 

Age, years, median [IQR] 55 [32-58] 

Sex, males, percentage 85 

Marshall score, median [IQR] 2 [2-4] 

GCS at study admission, median [IQR] 7 [5-9] 

GCS at study end, median [IQR] 9 [3-10] 

Daily TIL, median [IQR] 7.5 [6.0-9.0] 

Monitoring time with ICP in the red area, percentage 15 [0-42] 

Monitoring days, median [IQR] 5 [3-10] 

 

GCS: Glasgow Coma Scale 

TIL: treatment intensity level 

ICP: intracranial pressure 

 



 

193 
 

8.3.2   Model external validation and assessment of the real-time 

performance 

The dataset for the evaluation of the real-time performance of the model 
comprised 144019 samples of minute-by-minute ICP and MAP (about 100 
days of continuous predictions), of which 20551 (14.27%) corresponded to 
events of ICP dose in the red area.  

When evaluated on this prospectively collected dataset of real-time 
monitoring signals the model had an AUC of 0.92 and an AP of 0.76. With 
an alerting threshold equal to 0.5, the model had an accuracy of 0.87, 
precision of 0.68, sensitivity of 0.69 and specificity of 0.91. The optimal 
alerting threshold as computed from the receiving characteristic curve was 
equal to 0.28. At this alerting threshold, the model had an accuracy of 0.82, 
precision of 0.55, sensitivity of 0.87 and specificity of 0.81. See Table 8.2 
for a summary of the model performance for different alerting thresholds. 
Calibration analysis resulted in a calibration slope of 0.69 and a calibration-
in-the-large of 0.05, p-value < 0.01, see Figure 8.2 panel A. The model 

-0.65], see Figure 8.2, panel B.  

According to the grading scale for clinical readiness of Fleuren et al. [14], 
the model has a TRL = 6. A TRL = 6 requires the achievement of the 

Model performance is tested real-
time and integrated into the EHR/hospital system in one or more clinical 
settings, but no implementation into clinical workflow (i.e. no clinical staff 
is exposed to model results)  [14]. According to the grading scale of Fleuren 
et al. [14] a TRL = 6 is obtained by evaluating the model in a prospective 
observational study and demonstrating that the designed technical pipeline 
for the automated extraction of data in a clinical context is performed 
successfully. 
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Table 8.2  Model performance. Performance metrics are computed for the 
entire population

PERFORMANCE METRIC VALUE

AUC 0.92
AP 0.76

alerting threshold = 0.50
Accuracy 0.87
Precision 0.68
Sensitivity 0.69
Specificity 0.91

alerting threshold = 0.28
Accuracy 0.82
Precision 0.55
Sensitivity 0.87
Specificity 0.81

Figure 8.2   Performance of the prediction model. Panel A) Calibration curve. 
Panel B) Decision curve. Clinical benefit is demonstrated between the risk 
thresholds range of [0.09 - 0.65]. Panel C) Violin plots of the predicted probability 
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scores for events in the blue area and red area of the visualization plot. Two alerting 
thresholds are displayed. An alerting threshold equal to 0.5 corresponds to the alert 
threshold used in the external validation dataset (CENTER-TBI) while an alerting 
threshold of 0.28 corresponds to the threshold that maximizes sensitivity and 
specificity. It is possible to appreciate the change in number of false negatives and 
false positives in relation to the chosen alerting threshold. Panel D) Receiving 
characteristic curve of the model. 

 

8.4   DISCUSSION 

The goal of this prospective observational study was the evaluation of the 
real-time performance of the ML model for the prediction of harmful doses 
of ICP on a real clinical setting. This is the first study that assesses the 
bedside performance of a prediction model for harmful ICP. 

When evaluated on this dataset, which approximately counted 100 
continuous days of minute-by-minute predictions, the model presented 
slightly lower AUC (0.92), AP (0.76), accuracy (0.87), precision (0.68), 
sensitivity (0.69) and specificity (0.91) as compared to the performance on 
the external validation dataset consisting of the CENTER-TBI database (see 
Chapter 6). A drop in performance when evaluating the model on 
continuous data is expected. In fact, during the model development the 
events of ICP are strictly classified in blue or red regions, as visualized in 
Figure 8.1 panel B. This is a methodological simplification that does not 
fully represent a real clinical situation, were the transition between the two 
regions is likely to be more gradual. Also, in real-time clinical data the 
prevalence of events in the blue versus red area is more unbalanced as 
compared to the development and external validation dataset, which can 
also affect performance. Moreover, it is possible to appreciate from the 
violin plots of Figure 8.2 panel C that the majority of the predictions cluster 
around either 0 or 1 which corresponds to high certainty in the prediction 
and consequently low misclassification for a broad range of alerting 
thresholds.  Similarly, the decision curve showed clinical benefit for the risk 
thresholds [0.09-0.65], indicating that when tested on continuous signals 
the model presents useful clinical information for a very broad range of risk 
thresholds. Finally, for this specific clinical problem high specificity is 
preferred to high sensitivity, to strictly avoid alarm-fatigue, while still 
providing useful information to the clinicians. Therefore, we believe that 
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the model presents good enough performance to justify proceeding to an 
interventional clinical study. 

Importantly, the model performance highly depended on the chosen 
alerting threshold, with the most important impact on sensitivity and 
specificity. Acceptable alerting thresholds will need to be evaluated 
carefully by the clinician depending on the local policies and the clinical and 
personal needs of the patient, and it will mostly depend on the intended use 
of the model. Such threshold should be chosen from the clinical useful 
range [0.09-0.65], where for instance a threshold = 0.09 favors high 
sensitivity, while a threshold = 0.65 threshold will be chosen in situations 
where high precision and high specificity are desired (at the cost of a higher 
number of false negatives).  
 
A potential limitation of the presented study is the limited number of 
included patients. However, since every patients was monitored for a 
minimum of 3 days, the performance metrics were computed on more than 
144000 minute-by-minute predictions.  

This study represents a fundamental step in the process of bringing the 
prediction model for harmful ICP doses to the bedside. Importantly, this 
study increases the TRL of the model to level 6. The next step for the 
translation from bench to bedside is the implementation of the model in the 
clinical workflow through a future not-blinded prospective study. A future 
interventional study will need to evaluate whether the use at the bedside of 
the prediction model as an alerting tool will improve short- and long-term 
outcomes of patients as compared to an historical control group such as the 
CENTER-TBI. Outcomes of interest could be ICU mortality and length of 
stay, number of deleterious events of elevated ICP, time i

-months. 
 

8.5   CONCLUSIONS 

In this study, we evaluated the real-time performance of a prediction model 
for harmful ICP doses. When evaluated on prospectively collected minute-
by-minute data the model demonstrated excellent specificity, good 
calibration and clinical usefulness for a broad range of risk thresholds. 
These findings set the basis for a future clinical implementation and the 
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prospective evaluation of the benefits of the model on quality of care and 
patient outcomes. 
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8.A   APPENDIX

8.A.1   Supplementary figures

Figure 8.A.1   Example of real-time predictions of the model as compared to the true labels. 
Panel A) continuous ICP sequence, in this example the patient does not experience events 
of ICP dose in the red area of the visualization of Güiza et al. [7]. Panel B) true labels for 
the ICP sequence in exam. The time points in blue indicate, 30 minutes in advance, the 
presence of an ICP event whose dose belongs to the blue area of the visualization of Güiza 
et al. [7]. Panel C) displays the real-time predicted probabilities of the model for events of 
ICP dose in the red area. The model may fire an alarm depending on the chosen alerting 
threshold. Overall, the model correctly provides low probabilities of future events of ICP in 
the red area. Depending on the alerting threshold, brief episodes of false positive predictions 
may be provided by the model in sequence a and b of panel C. 
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Figure 8.A.2   Example of real-time predictions of the model as compared to the true labels. 
Panel A) continuous ICP sequence, events of ICP whose dose belongs to the red area of the 
visualization of Güiza et al. [7] are indicated with the red shaded area. Panel B) true labels 
for the ICP sequence in exam. The time points in blue and red indicate, 30 minutes in 
advance, the presence of an ICP event whose dose belongs to the blue and red area of the 
visualization of Güiza et al. [7] respectively. Panel C) displays the real-time predicted 
probabilities of the model for events of ICP dose in the red area. The model may fire an 
alarm depending on the chosen alerting threshold. In this example, it is likely that the model 
will provide a series of false positives predictions in sequence a of panel C. Moreover, in 
sequence b of panel C the model correctly provides high probabilities of a future event in 
the red area, depending on the chosen alerting threshold the alert will be provided with 
forewarning equal or longer than 30 minutes. Overall, the model correctly provides 
probabilities of future events of ICP in the red area that match the true labels.
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Figure 8.A.3   Example of real-time predictions of the model as compared to the true labels. 
Panel A) continuous ICP sequence, events of ICP whose dose belongs to the red area of the 
visualization of Güiza et al. [7] are indicated with the red shaded area. Panel B) true labels 
for the ICP sequence in exam. The time points in blue and red indicate, 30 minutes in 
advance, the presence of an ICP event whose dose belongs to the blue and red area of the
visualization of Güiza et al. [7] respectively. Panel C) displays the real-time predicted 
probabilities of the model for events of ICP dose in the red area. The model may fire an 
alarm depending on the chosen alerting threshold. In this example, depending on the chosen 
alerting threshold, the model may provide a series of false positives predictions in sequence 
a of panel C. Overall, the model correctly provides high probabilities for future events of 
ICP in the red area.
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9 
GENERAL DISCUSSION 

 

After critical illness, patients may suffer from long-term neurological 
impairment, with potentially significant consequences on their quality of 
life. During critical care, it is therefore of great interest to detect early signs 
of impending neurological damage, upon which clinicians can react and 
potentially impact neurocognitive outcomes. This interest goes beyond the 

of life after ICU discharge.  

In a modern ICU, the brain can be monitored using several modalities, 
invasively and non-invasively. The data that originates from these monitors 
contains useful information, which can be used to optimize treatment and 
improve the long-term outcomes of the patients. However, the 
interpretation and analysis of these multi-dimensional data may be 
challenging, and a visual examination or the analysis of simple descriptive 
statistics may not suffice. More advanced techniques may be needed. 
Artificial intelligence (AI) could be used for this purpose, as these 
techniques can be used to detect hidden patterns that may be linked with 
occurring neurological damage but are also able to provide predictions of 
impending brain-threatening events. 

In this thesis, we used AI to provide insights for decision-support and 
treatment optimization in three different types of patients with, or at risk 
of, brain injuries. In the first objective, we assessed the independent clinical 
usefulness of near-infrared spectroscopy to predict long-term neurological 
damage in children with congenital heart defects. In the second objective, 
we investigated the association between ICP doses and outcome in patients 
with aSAH. In the third objective, we validated a decision-support model 
for the early-prediction of elevated ICP in patients with TBI. In the fourth 
objective, we developed a model for the early prediction of a broad range of 
harmful doses of ICP in patients with TBI. In the fifth objective, we 
developed a prototype software for decision support and treatment 
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optimization in patients with TBI, implemented this software at the 
bedside, and tested the technical functioning as well as the predictive 
performance of the software. 

 

9.1   ASSESSMENT OF THE CLINICAL USEFULNESS OF NEAR-INFRARED 
SPECTROSCOPY IN THE POST-OPERATIVE CARE OF CHILDREN WITH 
CONGENITAL HEART DISEASES 

9.1.1   Main findings 

Children with severe congenital heart defects often suffer from 
neurodevelopmental deficits, because of associated genetic or congenital 
neurological or metabolic defects, or problems during gestation. Many of 
these congenital heart defects require surgical correction towards a normal 
or palliative physiology. The peri-operative period is often complicated with 
additional hypoxic or hypo-perfusion events, which may have an additional 
independent impact on outcomes. Peri-operative care for this vulnerable 
population is complex and pursuing adequate cerebral perfusion during the 
entire perioperative period is a challenge. Invasive monitoring in a pediatric 
setting is not self-evident. Non-invasive cerebral tissue oxygen saturation 
(SctO2) monitoring with near-infrared spectroscopy (NIRS) is a frequently 
used technique. Reduced perioperative SctO2 has been associated with 
worse short-term outcomes, such as increased length of PICU stay, post-
operative complications and mortality [1 3]. Nonetheless, critical SctO2 
thresholds to guide medical interventions are difficult to define. As a result, 
recommendations on treatment optimization based on NIRS monitoring 
are non-specific. It remains unclear whether NIRS provides clinically useful 
information, and how to use this information to deliver better treatment. 
For this scope, it is of great interest to investigate the association between 
reduced SctO2 and long-term neurodevelopmental outcomes, which 
remains undefined. 

In Chapter 3 we investigated the association between SctO2 as monitored 
by the NIRS and total IQ, 2 years after PICU admission. For this study, we 
set up a prospective observational blinded study in the PICU of the 
University Hospitals Leuven (UZ Leuven) between 2012 and 2015. The 
study included children after surgery for congenital heart defects. Children 
were monitored with the FORESIGHT NIRS monitor (CAS Medical 
Systems, Branford, CT.) up until the interruption of mechanical ventilation. 
The parents or legal guardian of the children were contacted 2 years after 
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PICU admission for a follow-up visit, where the total IQ was assessed by a 
team of trained psychologists. In the retrospective analysis of data, two 
features were extracted from the post-operative SctO2 signals, namely the 
mean SctO2 and the dose of desaturation (defined as SctO2 < 65%). The 
independent association between SctO2 features and total IQ was 
investigated with a Bayesian linear regression model corrected for the age, 
nutrition strategy, severity ad admission, presence of syndrome, nutritional 
strategy, and presence of cyanosis after surgery. We found that increased 
SctO2 desaturation and decreased SctO2 mean in the early-postoperative 
period independently increased the probability of a lower total IQ at 2-years 
follow-up. These findings were confirmed by several sensitivity analyses for 
different definitions of desaturation and for additional correcting factors in 
the multivariable regression model. 

9.1.2   Current impact of research and future perspectives 

The study presented in Chapter 3 demonstrates that events of reduced 
SctO2 in the postoperative period after cardiac surgery for CHD have a 
measurable impact on the total IQ up to 2 years later. These results suggest 
that SctO2 desaturations are important clinical events and that the NIRS 
provides clinically relevant information that could be used to optimize 
treatment. In particular, optimal SctO2 values are in a rather tight range 
between 65% and the upper range of 85%-90%, where both reduced and 
elevated SctO2 could be a marker of ongoing neurological damage. The 
results of this study may further corroborate the susceptibility of the 
immature brain to even brief episodes of reduced SctO2. Whether strategies 
aimed at preventing or treating these desaturations could influence the 
negative impact on IQ remains to be proven. Importantly, this study shows 
associations and no casual relations. A randomized interventional study 
would be needed to fully assess the impact of SctO2-oriented management 
strategies on outcomes. In this context, it is important to investigate 
whether it is realistic to design a management protocol to control or correct 
SctO2 by medical interventions. Preliminary prospective studies have 
already suggested that such SctO2 manipulation is possible, with an effect 
of outcomes [4, 5]. As these were single-center studies that only focused on 
the prevention of severe desaturation episodes (SctO2<50% and 
SctO2<20%), larger multicenter, randomized prospective studies whose 
management protocol targets SctO2 levels above 65% are needed.  
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To assess the clinical value of SctO2, relevant SctO2 summary metrics, such 
as the SctO2 dose or SctO2 mean over past intervals of time, need to be 
available at the bedside. Current NIRS monitors display only the current 
SctO2 value, sometimes with a timeline of previous values, but with none or 
very little summary statistics. The desaturation dose below user-specific 
threshold, which resulted highly significant in our study, is currently only 
available in one cerebral oximeter on the market (Root with O3 Regional 
Oximetry, Masimo, CA, USA). Our research, as well as several previous 
studies [1, 3], show the importance of interpreting the SctO2 trace with 
more complex statistical methods. 

Moreover, it would be interesting to assess whether SctO2 desaturation and 
reduced SctO2 are also associated with total IQ at later time points than 2 
years follow-up (for example 5- or 10-years follow-up). This information 
would be important to assess the long-term burden of impaired cerebral 
perfusion when experienced at a young age.  

In this study, we exclusively focused on the lower range of SctO2. However, 
the effect of hyperoxia (SctO2 > 85-90%) on the developing brain is equally 
important. Oxidative stress is known to be associated with pediatric 
conditions such as periventricular leukomalacia, peri- and/or intra-
ventricular hemorrhage or severe retinopathy [6 9]. The association 
between hyperoxia and long-term outcomes could not be investigated in the 
context of the study presented in Chapter 3, given that it was not part of the 
pre-planned statistical analysis and that few patients experienced such 
events, and therefore statistical power could not be reached. However, the 
long-term consequences of abnormally elevated SctO2 values on outcomes 
should be investigated in future studies to further assess the clinical 
usefulness of NIRS monitoring. 
 

9.2   ASSESSMENT OF THE ASSOCIATION BETWEEN ICP DOSES AND LONG-
TERM OUTCOMES IN PATIENTS WITH ASAH  

9.2.1   Main findings 

Patients with aneurysmal subarachnoid hemorrhage (aSAH) may suffer for 
increased intracranial pressure (ICP), which is associated with increased 
mortality and poor long term outcomes [10 12]. Specific recommendations 
for the treatment of elevated ICP in patients with aSAH are missing, and as 
a result, ICP is not monitored in every center. In addition, local protocols 
for the management of elevated ICP are mostly based on the guidelines for 
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traumatic brain injury, while safe ICP levels for patients with aSAH remain 
ill defined. In patients with aSAH treatment is based on a threshold-based 
approach that suggests the initiation of aggressive treatments when the ICP 
rises above 20-22 mmHg, similar to TBI. More insights on the role of 
elevated ICP in aSAH may provide a basis for ICP treatment optimization, 
with a potential impact on long-term outcomes. 

In Chapter 4, we investigated the association between ICP dose and long-
term neurological outcomes of patients with aSAH with the methodology 
introduced by Güiza et al. [10]. Such methodology allows the extraction of 
a color-coded plot that displays which events of ICP dose occur more 
frequently in patients with better and worse long-term outcomes. To 
achieve this goal, we performed a retrospective analysis of multicenter, 
prospectively collected data of 98 adult patients with aSAH amendable to 
treatment. Patients were admitted to the ICUs of two European centers 
(Medical University of Innsbruck [Austria] and San Gerardo University 
Hospital of Monza [Italy]) from 2009 to 2013. In addition, the independent 
association between the cumulative dose of intracranial hypertension and 
outcome for each patient was investigated by using multivariable logistic 
regression models corrected for age, occurrence of delayed cerebral 
ischemia (DCI), and the Glasgow Coma Scale score at admission. In both 
cohorts, the combination of duration and intensity defined the tolerance to 
intracranial hypertension. A semi-exponential transition curve divided ICP 
doses that were associated with better outcomes (in blue) with ICP doses 
associated with worse outcomes (in red). For the two cohorts, the transition 
curve occurred at different ICP levels. An increased similarity between 
transition curves was found when patients with known secondary 
complications were excluded from the visualization analysis. Importantly, 
an independent association was found between the cumulative time that the 
patients experienced ICP doses in the red area and long-term neurological 
outcomes in both cohorts. The ICP dose was an independent predictor of 
long-term outcomes, whereas the cumulative time spent by the patients 
with an ICP greater than 20 mmHg was not. 

 

9.2.2   Current impact of research and future perspectives 

The results presented in Chapter 4 suggest that the duration of an ICP 
elevation is a relevant measure for the evaluation of ICP harmfulness and 
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therefore should be considered in the decision-making process for 
treatment of elevated ICP. Interestingly, for both aSAH cohorts the 
transition curves occurred at lower ICP levels than the ones obtained for 
TBI [13 15]. Once again, this suggests that treatment of ICP in aSAH 
requires a targeted and personalized approach, with two possible 
interpretations. First, the visualization suggests that in patients with aSAH, 
ICP levels around 15-20 mmHg may already be harmful and that clinicians 
should target as low ICP values as possible. In alternative, the results may 
indicate that intracranial hypertension is an important surrogate marker of 
underlying mechanisms, that eventually lead to neurological deterioration. 
As an argument in this favor, it is likely that cerebrospinal fluid (CSF) 
circulation disturbances were not the only cause of increasing ICP values, 
given that in both cohorts continuous CSF drainage did not suffice to 
control the ICP to more physiological values. ICP is only one of the main 
determinants of outcome in aSAH and therefore its independent 
contribution may need to be studied together with other signals or indexes 
that may detect other forms of brain-threatening events. In this context, it 
would be of great interest to assess the association between ICP and 
outcome in relation to the CAR status of the patient. In patients with aSAH, 
impaired autoregulation is associated with DCI and poor long-term 
outcomes [16, 17]. Similarly, it could be of interest to integrate the ICP with 
local measurements of brain oxygenation (PbtO2). PbtO2 can be used as a 
monitor of tissue hypoxia due to DCI [18], which is a main contributor to 
outcomes in aSAH. In fact, extremely reduced PbtO2 can occur also in 
absence of elevated ICP, leading to poor short and long-term outcomes [19]. 
To perform these studies, large multi-center databases of high-quality 
monitoring data are needed. However, this may be one of the main 
challenges of aSAH research. The uncertainty that revolves around aSAH 
monitoring and treatment, resulted in a high variability in treatment 
protocols among centers. This variability makes large-scale research based 
on multi-center collaborations challenging, which in turn further fuels the 
lack of knowledge on aSAH pathophysiology. 

As mentioned before, ICP monitoring for severe aSAH is not standard 
practice in most ICUs. Invasive ICP monitoring has an intrinsic risk for the 
patient, due to infections, brain tissue lesions or hemorrhage. In addition, 
it is a costly technique that requires specialized personnel and a 
neurosurgical setting. For some centers, the benefits of invasive ICP 
monitoring in patients with aSAH do not outweigh the related risks and 
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costs, especially considering the lack of specific recommendations on ICP 
management. Given these issues, non-invasive assessment of ICP could be 
a valuable solution for these patients. A precise enough technique to 
measure ICP non-invasively has not been developed yet. Several studies 
evaluated the possibility to measure ICP non-invasively with the 
transcranial doppler, optic nerve sheath diameter or imaging based sensors 
but with limited success [20]. 

 

9.3 DEVELOPMENT OF DECISION SUPPORT TOOLS FOR THE MANAGEMENT 
OF SEVERE TRAUMATIC BRAIN INJURY 

9.3.1   Main findings 

Severe TBI is a critical medical condition, with high mortality rate and high 
prevalence of long-term neurological impairment among survivors [21, 22]. 
In TBI, outcomes are mostly determined by the occurrence of secondary 
brain injuries (SBI) which are caused by intracranial and systemic events 
that follows the initial traumatic injury. To optimize outcomes, 
management of TBI mostly aims at keeping the patient stable while 
avoiding SBI. One of the leading mechanisms for SBI is the abnormal 
increase of the ICP of the patient, which can provoke mechanical distortion 
of brain tissues, midline shift or herniation, or could impair cerebral 
perfusion. 

While the ICP plays a crucial role in TBI pathophysiology, guidelines for the 
optimal treatment strategy for elevated ICP are mainly expert-based [23]. 
Current Brain Trauma Foundation guidelines suggest a threshold-based 
approach that expects to start aggressive treatment when the ICP rises 
above 22 mmHg [24]. This approach evaluates ICP harmfulness by sorely 
considering the ICP absolute value, although several studies suggested that 
the combination of ICP intensity and changes of ICP over time, quantified 
with the ICP dose, may better evaluate the potential risk of an ICP event. 
The association between ICP dose and outcomes could be visualized with 
the method proposed by Güiza et al. [13] who demonstrated that events of 
ICP dose that occur more frequently in patients with better and worse long-
term outcomes, could be represented in two separated areas. In addition, 
several factors may contribute to the ability of the patients to tolerate 
abnormal ICP, for example the CAR status of the patient should be taken 
into consideration when evaluating therapy in the presence of elevated ICP. 
In clinical practice, clinical decision making based on CAR is challenging, 
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because of the lack of validated methods to assess or quantify CAR at the 
bedside. 

To assist decision-making in TBI management and promote a more 
proactive treatment of elevated ICP, Güiza et al. [25] proposed a prediction 
model for the early-detection of events of extremely elevated ICP in patients 
with TBI. The model predicted with a 30 minute forewarning events of 
ICP > 30 mmHg that lasted more than 10 minutes. One important aspect 
for the translation into clinical practice is the external validation of these 
models on multi-center, large, unseen data. External validation quantifies 
the ability of the model to generalize from the development data (data used 
to learn a task) and successfully perform a task when applied to unseen 
data. In Chapter 5 we externally validated the prediction model of Güiza et 
al. [25] on the High-Resolution CENTER-TBI dataset. When evaluated on 
this large, multicenter European dataset of prospectively collected data of 
patients with severe TBI, the model presented robust performance as 
compared to the performance on the original development cohort. The 
results presented in Chapter 5 demonstrate the generalizability capacities 
of the model, with performance that was unaffected by potential changes in 
clinical practice or clinical settings.  

Beyond the ICP events that were targeted by the prediction model of Güiza 
et al. [25] , there are other ICP events, of lower intensity but longer 
duration, that are equally associated with poor long-term outcomes. 
Therefore, in Chapter 6 we further worked on the concept of ICP prediction, 
but differently from what was done in previous studies, we did not focus on 
the prediction of one specific ICP event, of specific intensity and duration, 
but on the prediction of a broad range of ICP doses that have been 
associated with poor long-term outcomes in previous studies [13]. The 

novelty of this prediction model. Specifically, the prediction target included 
a broad range of doses of elevated ICP that have been associated with poor 
neurological outcomes in the visualization of Güiza et al. [13]. The model 
was developed on a multi-center dataset of 290 adult patients with severe 
TBI and externally validated on 264 patients from the High-Resolution 
CENTER-TBI dataset. The prediction model presented in Chapter 6 
presented good and robust performance on the development and external 
validation set, providing timely and accurate predictions of a broad range 
of harmful ICP doses. The model can be a valuable alerting tool for when a 
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patient is at high risk of harmful ICP doses and therefore requires medical 
evaluation. 

To promote the use of this prediction model in future interventional 
studies, in Chapter 7 we developed a prototype software that displays the 
model predictions as well as other potentially relevant information for 
decision support and treatment optimization of patients with TBI. Although 
the software does not suggest therapeutic intervention, we can still talk 
about decision support given that it informs the clinician on when a clinical 
decision may be required. In detail, the software displays the continuous 
predictions of harmful ICP events, the LAx as index of CAR, and the real-
time visualization of the ICP and LAx intensity-duration burden. The 
interface of the software was developed in close collaboration with the 
nurses and clinicians of the ICU of the University Hospitals of Leuven (UZ 
Leuven). In addition, the prototype software was integrated and tested in a 
blinded mode in the ICU of UZ Leuven. This study allowed us to obtain a 
robust and interpretable tool for future interventional studies. Moreover, 
demonstrating accuracy and clinical utility on retrospective data, does not 
guarantee that the model will perform equally well when applied to real-
time clinical data. Therefore, in Chapter 8 we performed a preliminary 
evaluation of the performance of the prediction model for harmful ICP 
doses (presented in Chapter 6) when applied to continuous data 
prospectively collected at the bedside. When evaluated on these real clinical 
data, the model presented excellent discrimination and specificity, good 
calibration, and clinical usefulness for a broad range of risk thresholds. The 
performance of the model on this small dataset justifies a future 
interventional study. Future interventional studies are required to assess 
whether the use of this mode
outcomes. For the successful execution of these interventional studies, this 
model needs to be integrated into clinical care workflow and be available as 
usable and interpretable tool, therefore the importance of the development 
of the prototype software that was presented in Chapter 7.  

9.3.2   Current impact of research and future perspectives 

New decision-support tools for the management of patients with severe TBI 
could be used to aid clinicians in the challenging task of interpreting 
neuromonitoring values to steer therapy. In this thesis, we developed such 
software for treatment optimization in TBI. The research presented in this 
thesis covers most of the necessary steps of software development, from 
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model development to external validation and proof-of-concept in a small 
clinical trial. The result is a prototype software that can be used in a future 
interventional study.  

One of the main features of this software is the implementation of the 
prediction model for harmful doses of ICP, which was presented in Chapter 
6. The use of this prediction model at the bedside may contribute to 
overcoming the limitations of the current standard management of elevated 
ICP. The model allows for early interventions against the entire spectrum 
of doses of ICP that have been associated with outcomes that define a poor 
neurological status. This is an innovative approach, not only because it 
reformulates the treatment target from prevention of ICP elevations to 
prevention of harmful events of ICP doses, but also because the formulation 
of the prediction target explicitly strives for better long-term outcomes. 

The prediction model of Chapter 6 predicts a broad range of ICP doses in 
üiza et al. [13]. A future 

extension of this prediction model may focus on identifying the exact 
position of the patient in the red area of the visualization plot, in the next 
30 minutes. This information would be complementary to the alerts 
provided by the model presented in Chapter 6 and it may help the clinician 
to better tailor the clinical intervention in response to an alert from the 
prediction model for harmful ICP doses. In addition, future versions of the 
prediction model presented in Chapter 6 should define the targeted red area 
in relation to constant changes in CAR status. In fact, it was demonstrated 
that the color-coded visualization from Güiza et al. [13] changes in relation 
to the CAR status of the patient (quantified with the LAx) [13], showing that 
in case of impaired CAR the ability of the patient to tolerate elevated ICP 
decreases. In a future version of the prediction model, these more complex 
versions of the visualization plots should be considered. In addition, it 
would be interesting to combine the predictions of the model for future 
doses of ICP with those of prediction models for different types of future 
brain-threatening events. For example, it would be interesting to predict 
events of reduced PbtO2 or reduced cardiac output, and then combine them 
with the prediction model of Chapter 6 not only to get more accurate 
predictions of impeding harmful ICP doses, but also to detect a broader 
range of secondary brain injuries or early signs of reduced intracranial 
compliance. The model developed by Myers et al. [26] is a promising 
example of a prediction model for PbtO2 crisis in TBI, it presented good 
accuracy, sensitivity and specificity on the external validation dataset (only 
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temporal validation). However, these results need to be validated on a 
multicenter external dataset. To the best of our knowledge accurate models 
for prediction of cardiac output or heart rate in TBI are not available. 

Moreover, it is important to mention that the harmfulness of doses of ICP 
may depend on the remaining capacity of the brain to tolerate (or 
compensate) intracranial hypertension. In view of individualized ICP 
treatment, brain tolerance to intracranial hypertension should be taken into 
consideration when evaluating the treatment strategy of the patient when 
reacting on an alert from the model. Brain tolerance can be roughly 
estimated with different complementary methods. For example, by 
evaluating the CAR status of the patient, by monitoring local cerebral 
oxygenation with the PbtO2, by examining the pupillary reactivity or by 
assessing cerebral blood flow through Transcranial Doppler. Although 
relevant for the evaluation of the clinical status of the patients, all these 
methods have important limitations and a safe and effective protocol that 
explicitly includes the evaluation of brain tolerance in the management of 
elevated ICP is still missing. 

The impact of the use of the prediction model for harmful doses of ICP in 
will need to be evaluated with an 

interventional study. In such a study, the model will provide alerts to the 
clinician of when a patient is at risk of harmful ICP doses and therefore in 
need of special medical attention, however, the definition of the clinical 
strategy of the patient will remain at total discretion of the clinician. To 
avoid bias towards non-monitored patients, the included patients will be all 
monitored with the decision-support tool. The time of the alerts will be 
recorded as well as the administered treatment, if any. Short term and long-
term outcomes, such as length of ICU stay, mortality and Glasgow Outcome 
Scale at 6 months, will be collected and later compared with an historical 
control group, for example the CENTER-TBI. In addition, prevalence of 
elevated ICP and ICP in the red area will be calculated and compared 
between the intervention and the historical control group. KU Leuven 
internal funding has been granted (C3/21/071) to fund this project, which 
should start in the second trimester of 2022. Importantly, short- and long-
term outcomes in TBI are not only determined by elevated doses of ICP, but 
also affected by the intracranial underlying mechanisms, such as 
excitotocitity, mitochondrial dysfunction or oxidative stress that also 
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outcomes may improve by only treating elevated dose of ICP. The planned 
interventional study may partially answer this question. 

In this thesis, we implemented a prototype decision-support tool that 
displays prediction of harmful ICP events (from the machine learning 
models presented in Chapter 5 and 6) so as other relevant information. The 
software has been tested at the bedside on real clinical data (Chapter 7 and 
8). This type of study is unique, in fact despite the surge in machine learning 
(ML) models for clinical problems and the rising expectations on the use of 
AI and ML at the bedside, very few examples of ML models have actually 
made it to the implementation phase. One of the main barriers in the 
translation of ML models at the bedside are the several ethical and 
regulatory issues that result from the application of relatively new statistical 
methods to a highly regulated field. Moreover, it is crucial that these models 
address specific clinical needs, in a clinically relevant way, but also that they 
are trusted and well accepted by nurses and clinicians. Trust can be gained 
by transparent and effective reporting to facilitate understanding and 
replicability. Moreover, it is indispensable to involve nurses and/or 
clinicians during the entire process of model development and 
implementation at the bedside and allow them be the main drivers of ML 
research in healthcare. The promotion of interdisciplinary training for the 
new generation of clinicians could provide a better overview of the 
methodology behind ML models with several benefits. First, promote a 
closer collaboration between clinicians and data scientists. Second, allow 
the clinician to have a critical viewpoint towards ML tools and recognize 
value beyond the hype. Third, make the clinicians more aware of the 
strengths and limitations of this new methodology, promoting a better 
interpretation of the results of ML research on clinical data. Fourth, once a 
ML model is implemented at the bedside, increased awareness will allow 
for a constructive computer-doctor collaboration. The ML model will 
become an additional diagnostic/decision-support/alerting tool at 
disposition of the clinician, who will be able to interact with the model by 
setting the best alerting threshold depending on whether type I error (false 
positives) or type II error (false negatives) needs to be avoided. This 
interdisciplinary trend has already started, as an example of this, the recent 
editions of the European Society of Intensive Care Medicine (ESICM) 
conferences included one thematic program that was dedicated to AI and 
ML in the ICU. Another barrier against the implementation of ML at the 
bedside are the several technical challenges. In fact, beyond the technical 
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challenge of implementing the bedside software itself, testing a prototype 
software at the bedside requires the close collaboration with the IT 
department of the hospital and the compliance with all the safety 
regulations of the hospital on the acquisition and processing of medical 
data. Of particular interest would be the development of a common 
research platform based on the collection of data from the hospitals 
electronic health records where researchers can easily implement their AI 
model and test it in a blinded mode in real clinical setting. This type of 
collaboration would facilitate the multicenter, blinded, prospective 
evaluation of these models at the bedside for those research groups with 
little background in data science or programming. 

In Chapter 8 of this thesis, we evaluated the performance of the model for 
the prediction of harmful ICP doses in real-time clinical data. The 
evaluation of the real-time performance of the model with standard 
performance metrics such as accuracy, sensitivity or precision is 
challenging. These metrics may give an idea of the performance of the 
model, but do not take into consideration the trend over time of the 
predictions and do not integrate considerations that could be assessed only 
visually. The definition of new performance evaluation metrics would be of 
great interest for the scientific community and would probably provide 
additional instruments for the evaluation of these models on real clinical 
data. 

This research was made possible by using high-quality, large, prospectively 
collected, multi-center, open-source datasets of clinical and monitoring 
data of patients with TBI. These datasets are the only mean by which 
impactful research is possible and common scientific efforts dedicated to 
the collection of such datasets should continue. The collection of 
multicenter datasets is challenging and requires a strong collaboration 
between parties. One of the barriers in the collection of multi-center 
datasets is the aggregation of data from disparate sources, and the lack of a 
uniform storage protocol across centers. Moreover, the relatively new 
General Data Protection Regulation (GDPR) had a significant impact on 
healthcare organization and data collection. The GDPR contemplates for 
health data a higher level of protection and as such requires collecting 
explicit consent from each patient or their relative. In addition, given the 
relatively low incidence of severe TBI, collection of big datasets of patients 
with TBI is a long and resource-intensive task. The collection of high-
quality dataset requires big investments, which may be even more 
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challenging given that funding for TBI research is limited when compared 
to other conditions like cancer.  

9.4  GENERAL CONCLUSIONS 

In this thesis, we used AI to gain insights on the role that neuro-monitoring 
signals can play in the optimization of treatment in critically ill patients at 
risk of brain injuries. First, we demonstrated that in children with CHD, 
post-operative SctO2 desaturation independently increases the probability 
of lower total IQ 2 years after PICU admission. Desaturation was 
demonstrated to be an important clinical event in the post-operative 
management of children with CHD. Future interventional studies need to 
assess whether management strategies aimed at preventing or treating 
post-operative desaturation will result in better outcomes. Second, we 
investigated the association between elevated ICP doses and long-term 
neurological outcomes in patients with aSAH. We demonstrated that the 
association between ICP dose and long-term outcomes can be visualized in 
a color-coded plot and that the dose of ICP may have a greater clinical value 
than the ICP absolute value. Third, we demonstrated that a previously 
developed prediction model for elevated ICP has robust performance when 
evaluated on a large, multicenter dataset. Fourth, we developed and 
validated an accurate prediction model for harmful doses of ICP in patients 
with severe TBI. The model presented good and robust performance when 
evaluated on the development and external validation dataset, 
demonstrating clinical usefulness for a broad range of risk thresholds. 
Moreover, to prepare for a future clinical implementation, we developed a 
prototype software that implements such prediction model so as previous 
research results and we tested it at the bedside. Finally, we prospectively 
evaluated the performance of the model for the prediction of harmful ICP 
doses on a real clinical setting, where the model demonstrated good enough 
performance to proceed to an interventional study. 
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SUMMARY 

 

Critically ill patients admitted in an intensive care unit (ICU) may suffer 
from long-term neurological impairment with important repercussions on 
their quality of life after ICU discharge. The prevention of neurological 
damage is a main concern in critical care and in some patients the clinical 
status of the brain is continuously monitored through several modalities. 
However, the large amount of generated data may be difficult to interpret 
and as a result, subtle patterns of occurring neurological damage may 
remain unnoticed. More advanced methods to process and interpret these 
data may be needed. In this context, artificial intelligence (AI) can be used 
to perform patter recognitions, classification or predictions. More 
generally, AI indicates a group of statistical and mathematical methods that 
allow to perform a task automatically and therefore enable problem-solving 
and decision making. 

The general objective of this PhD thesis was to use advanced AI techniques 
to gain insights on the association between neuro-monitoring signals and 
long-term outcomes in patients at risk of brain injury and to develop new 
tools for treatment optimization in neuro-monitored patients. This 
research project consisted in five parts, where we focused on three different 
types of patients at risk of brain injury, namely children after cardiac 
surgery for congenital heart defects, patients with sub-arachnoid 
hemorrhage and patients with traumatic brain injury. 

In the first part of this research project, we studied the independent 
association between reduced cerebral tissue oxygen saturation (SctO2) as 
measured by the near-infrared spectroscopy (NIRS), and long-term 
neurocognitive outcomes in children that underwent surgery for congenital 
heart defects (CHD). Children with severe CHD can suffer from reduced 
cerebral oxygenation, which can cause hypoxic and/or ischemic damage to 
the brain and lead to long-term neurodevelopmental deficits. Therefore, 
during the entire perioperative period, local SctO2 of the frontal lobe of the 
child is monitored non-invasively with the NIRS. However, physiological 
values of SctO2 are not well defined and consequently specific SctO2-based 
guidelines for treatment optimization are missing. In this research project, 
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we gained insights on the role of SctO2 as neuro-monitoring signal in a 
pediatric setting. We used prospectively collected data of children after 
cardiac surgery for CHD to investigate the association between SctO2 and 
total IQ at two years follow-up. We found that increased SctO2 desaturation 
(defined as SctO2<65%) and decreased SctO2 mean in the early-
postoperative period independently increased the probability of a lower 
total IQ at 2-years follow-up. These results suggest that SctO2 as measured 
by the NIRS could be a valuable neuro-monitoring signal for the post-
operative management of children with CHD. Future studies should 
investigate whether a NIRS-based protocol that targets SctO2 values 
between 65% and 85-90% would result in improved long-term 
neurocognitive outcomes. 

In the second part of this research project, we studied the independent 
association between doses of elevated intracranial pressure (ICP) and 
neurological outcomes, in patients with aneurysmal sub-arachnoid 
hemorrhage (aSAH). Patients with aSAH may suffer from elevated ICP, 
with potential consequences on their long-term neurological outcomes. 
Although elevated ICP in patients with aSAH is associated with poor 
outcomes, specific recommendations for its treatment are missing and 
current clinical practice is mostly based on the guidelines for traumatic 
brain injury (TBI). In patients with TBI, the combination of intensity and 
duration of an ICP event, also called ICP dose, has been demonstrated to be 
associated with outcomes. More insights on the role of abnormal ICP in 
aSAH may provide the basis for treatment optimization, with a potential 
impact on long-term outcomes. In this project, we visualized the association 
between doses of elevated ICP and neurological outcome (6-month Glasgow 
Outcome Score [GOS]) in 2 groups of patients from 2 European ICUs. For 
both cohorts, the resulting color-coded plot showed an association between 
doses of ICP and 6-month GOS. A semi-exponential transition curve 
defined two areas of ICP doses that were associated with good or poor 
outcomes, indicating that the combination of duration and intensity of 
elevated ICP may play a role in the definition of outcomes in patients with 
aSAH. The cumulative time that the patient spent in the area of the 
visualization curves that was associated with poor outcomes resulted 
independently associated with poor 6-month GOS in a multivariable 
logistic regression model which was corrected for known confounders. The 
time spent in the red area was a stronger predictor of outcomes that the 
cumulative time with ICP above 20 mmHg. These results suggest that the 
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intensity and duration of an ICP events, i.e. the ICP dose, is a strong 
predictor of long-term neurological outcomes in patients with aSAH. 
Further multicenter studies are needed to validate these findings. 

In the third part of this research project, we performed an external 
validation of a prediction model for extremely elevated ICP in patients with 
TBI. External validation is a crucial step to bring machine learning (ML) 
models at the bedside. It assesses the generalizability capacities of the 
model, and test whether the model has similar performance when applied 
on data from different settings or different periods of time. In this research 
project, we externally validated a ML model for the prediction of events of 
ICP above 30 mmHg. For the validation we used the High-Resolution 
Collaborative European NeuroTrauma Effectiveness Research in Traumatic 
Brain Injury (HR CENTER-TBI) dataset, a large multi-center dataset of 
prospectively collected data of patients with severe TBI that were admitted 
in the ICUs of 35 European centers between 2015 and 2017. On this external 
dataset, which was collected almost 10 years later than the original 
development cohort, the model presented robust performance, with 
excellent accuracy, sensitivity and specificity and good calibration. 
Moreover, the model demonstrated clinical usefulness for all clinical 
relevant risk-thresholds. The results demonstrate that this prediction 
model is robust to inter-center variability and potential changes in clinical 
practice. 

In the fourth part of this research project, we developed and externally 
validated a model for the prediction of potentially harmful doses of ICP in 
patients with severe TBI. In patients with TBI, prolonged elevated ICP is 
associated with poor long-term neurological outcomes and mortality. 
Therefore, monitoring and treatment of abnormal ICP is a cornerstone in 
the management of severe TBI. Current guidelines suggest a threshold-
based approach, where the initiation of aggressive treatment is triggered by 
the rise of ICP above 22 mmHg, although the combination of intensity and 

neurological risk that is associated with an ICP event. Prediction of future 
doses of ICP that have been associated with reduced long-term outcomes 
may allow for early intervention and treatment optimization in severe TBI. 
In this study, we developed and validated a ML model that predicts with a 
30 minutes forewarning events of ICP doses that have been associated with 
poor neurological outcomes in previous studies. For this scope, we used as 
development and external validation datasets two large European multi-
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center datasets of monitoring data of patients with TBI. The prediction 
model provided accurate predictions of potentially harmful doses of ICP on 
the development and external validation dataset. Moreover, in both 
datasets the model demonstrated clinical usefulness for a broad range of 
risk thresholds. Whether early intervention on the basis of ICP dose 
predictions will result in improved short and long-term outcomes will be 
tested in a future interventional study. For this scope, it is important to first 
evaluate the performance of the model when used on a real clinical setting. 
This crucial passage evaluates the level of clinical readiness for bedside 
implementation of a model. Therefore, in the fifth part of this research 
project, we first developed a prototype software for the implementation of 
the prediction model for harmful ICP doses at the bedside. Later, we 
assessed the performance of the prediction model for harmful ICP doses on 
a real clinical setting. The prototype software was designed and developed 
in close collaboration with nurses and clinicians of the ICU of UZ Leuven 
and displays in an interpretable fashion the predictions of harmful ICP 
doses so as other research results that can provide valuable clinical 
information. The prototype was tested at the bedside in a blinded mode in 
a technical validation, which resulted in a robust software that can be used 
as research tool in an interventional clinical trial. Part of the data 
prospectively collected during the technical validation were used for the 
assessment of the model performance in real-time. As expected, the model 
presented a slight drop in performance when evaluated on continuous data, 
but still presented good calibration and clinical usefulness for a broad range 
of risk thresholds. Importantly, performance highly depended on the choice 
of the alerting threshold, which however will likely depend on the local 
policies of the center and on the personal needs and preferences of the 
patient. This study is a fundamental step for the future implementation of 
the model at the bedside since it demonstrates good enough performance 
to warrant to proceed to an interventional study and it already provides a 
functioning, robust software prototype for the scope. 

In conclusion, the research presented in this thesis provided new 
knowledge on the role of neuro-monitoring signals in the early prediction 
of occurring neurological damage in patients with brain injuries. Moreover, 
we translated part of this new knowledge in a bedside prototype software, 
that opens avenues for the execution of an interventional study and the 
assessment of the impact that the use of these research results at the 
bedside may have on patients outcomes. 
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