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The best way to predict the future is to create it.

— Abraham Lincoln
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2 introduction

1.1 critical illness

1.1.1 Overview

Critical Care Medicine is a relatively young and high-tech branch in modern
medicine that combines clinical skills, powerful drugs and sophisticated
mechanical devices to support the function of vital organs. This allows patients
to survive a variety of previously lethal insults such as multiple trauma, major
surgery, complication of chronic illness, extensive burn, or severe infection.
Patients admitted to the intensive care unit (icu) have acute life-threatening
conditions and require continuous observation and monitoring.

Despite this dedicated care, mortality among critically ill patients who
require intensive care for more than a few days remains around 20% worldwide.
Critical illness affects millions of patients each year, and consumes a large
fraction of health care resources [1]. The diagnostic-therapeutic cycle in these
patients is short as their clinical situation may vary rapidly. It is therefore
of great interest to detect those patients most vulnerable to specific organ
deterioration as early as possible, in order to administer dedicated therapies
earlier and hopefully prevent the chronic and lethal phases of critical illness.
Prediction is at the heart of intensive care medicine.

1.1.2 Information overload

The typical icu generates vast amounts of data from several devices for
each patient, including patient monitors, mechanical ventilators, syringe and
infusion pumps for delivery of drugs and fluids, or renal replacement therapy
machines (Figure 1.1). These monitors and therapeutic devices generate data
on an intermittent or continuous basis. In addition, laboratory tests of blood
samples are analyzed several times a day, and microbiology samples several
times a week. Chest x-ray are often performed daily in almost all patients. In
some, computed tomography (ct) scans are necessary once to several times
during their stay. The patient chart also contains drug prescription and notes
from nurses and intensivists. The amount of data generated per patient is
gigantic.

Nowadays, sophisticated monitors display the physiological data in various
combinations, including numerical values but also in traces over the past
minutes, hours or days. icu physicians combine their medical knowledge
and experience with the large amount of patient-related data (including
artefacts and measurement failures that they have to identify and discard)
to foresee changes in patients’ state and adapt therapy accordingly. However,
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Figure 1.1 Picture illustrating the vast number of monitors connected to a critically ill
child in the pediatric intensive care unit.

integrating all data from various sources over time to manage the care of several
patients simultaneously exceeds human capacity. This problem is referred to as
information overload.

A possible amenable consequence is that important, but inaccessible, pieces
of information are discarded when clinicians have to make decisions fast.

1.1.3 Electronic health records

In the past decades, computerization has revolutionized many sectors.
Progressively, electronic devices have been integrated in the icu. On the one
hand, the computerization of the icu has further contributed to the problem
of information overload, by providing support for the implementation of
electronic alarms to warn the clinical staff of patient deterioration. Although
the development of such alarms is motivated by the improvement of patient
care, in practice, clinicians and nurses get overwhelmed by false alarms. On the
other hand, the computerization of the icu has also provided an opportunity
to simplify data visualization and improve usability.

The digitalization of patient charts has led to the creation of electronic health
records (ehrs). ehrs are large databases that contain the complete electronic
medical chart for each critically ill patient. The database integrates all patient-
related data including demographics, medical history, interventional reports,
and data collected upon admission and during icu stay.
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There are several advantages of the digitalization of medical charts. The ehr

provides a better quality of medical charting, less administrative workload,
hence providing more time for patient care, increased clinical staff satisfaction,
and nursing retention [2, 3]. It also allows speeding up medical research
with a faster and easier access to patient data. The adoption of the ehr

allows to perform secondary use of data, at the level of each medical center,
or multicenter, hence providing unique benchmarking opportunities. icu

computerization has already happened in numerous centers and is spreading
worldwide.

At the University Hospitals Leuven (UZLeuven), the ehr is implemented
through a Patient Data Management System (pdms) (MetaVision, iMD-Soft,
Needham, ma, usa) that stores continuous data on a minute-by-minute basis.
The average amount of data generated per patient per day is 6.3 MB. With
124 icu beds at an occupancy rate of 90% during the whole year, the icus
from the UZLeuven generate approximatively 250 GB per year. The current
database contains more than 3400 GB. The ehr itself has provided support for
the creation of large clinical trial databases.

1.2 big data analytics in critical illness

1.2.1 Overview

Big Data refers to the current speed and volume at which computerized data
are generated by web applications and by the digitization of information
that was previously available on paper only. Additionally, it refers to the
improvement in technology that enables to store, process, and analyze these
data [4]. Informally, these characteristics are referred to as the ”the three Vs” of
big data: Volume, Velocity, and Variety. Surprisingly, nowadays it is more cost-
effective to invest in data storage than in cleaning old databases [5]. However,
the lack of standardization and the uncertain data quality has added a fourth
V for ”Veracity” to the definition. Finally, big data is useless without a clear
vision and knowledge of the ”Value” it will bring to business or healthcare [4].
Together, Volume, Velocity, Variety, Veracity and Value are the five Vs of Big
Data.

These data are too voluminous and complex to be processed and analyzed by
traditional methods. Big data analytics use techniques from computer science
such as machine learning to create new knowledge by identifying patterns in
very large amounts of data. Machine learning encompasses a various range
of algorithms that are able to learn from multidimensional data to perform
pattern recognition, predictions, or generate data-driven hypothesis.
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Together with digitalization, big data analytics have become increasingly
popular and have been used in various fields including genome sequencing,
omics, administrative database, social networks, connected objects, and
telemedicine among others. The main applications of big data analytics include
knowledge discovery and predictive modeling.

Knowledge discovery is defined as an “exploratory analysis and modeling
of data and the organized process of identifying valid, novel, useful and
understandable patterns from these data sets ” [6]. The generation of new
knowledge can be performed by findings hidden associations or visualizing
the data differently, among others.

Predictive modeling refers to the development of an algorithm for
classification or regression. In a classification problem, one wants to predict
a binary or categorical outcome, such as whether a patient will develop a
particular complication in the following days; while in a regression problem,
the outcome of interest is a continuous value, for instance, the blood pressure
of a particular patient in one hour from now. Such algorithms can be developed
using supervised or unsupervised techniques. Supervised predictive modeling
uses a labeled dataset (a dataset for which the outcome is known), while
unsupervised modeling uses unlabeled data.

1.2.2 Application to critical illness

Big data analytics can give a new perspective on the many challenges that
clinicians face in medicine and critical care [7]. The massive quantities of data
from ehrs are currently underused and hold the promise of supporting a wide
range of novel applications, to improve care, save lives and lower costs [8, 9].
These novel applications might be patient-specific but also center-specific. They
include among others,

• Clinical decision support tools to assist physicians in clinical decision-
making and in tailoring diagnostic and therapeutic strategies for each
patient;

• Early warning systems to foresee patient worsening or for the counseling
of patients or their relatives to provide an estimate of icu or later
outcomes;

• User-friendly visualization applications that extract insights from clinical
data and display relevant patient information [8].

These applications will help the physician to focus his or her attention
on what really matters. They will provide more time for clinician-to-patient
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interaction, which might result in improved care and allow clinicians to record
more phenotypes [10]. The ultimate goal of big data anlytics in critical illness is
to achieve improvements in both the process of care and patient outcomes [11].

1.2.2.1 Complementary approach to randomized controlled trials

A randomized controlled trial (rct) is the gold standard to demonstrate efficacy
and safety in medical research. The aim of a rct is to investigate the impact of
a medical intervention by randomizing patients to an arm receiving the specific
intervention (intervention group) or to one receiving a placebo or an alternative
intervention (control group). The randomization process is introduced to
minimize selection bias and distribute evenly potential confounding factors in
each arm.

It is very challenging to design rcts that take into account population
heterogeneity, and to delineate those subgroups that might benefit most
from a certain intervention. On the one hand, randomizing patients is still
the best way to establish a causal inference between an intervention and
outcome. On the other hand, ethical, financial, timing or compliance constraints
can limit the feasibility of translating a research question into a rct [12].
Additionally, in some research fields, results of rcts have been discouraging.
For instance, most rcts on neuro-protective strategies in the neuro-critical care
unit have been negative [13]. The exact reasons for this include insufficient
preclinical experimental work, incomplete (patho-)physiological understanding
or methodological flaws. In addition, the primary endpoints might not have
been sensitive enough, or might have missed a link with the pathophysiology.
In such specific settings, the need for alternative methods to expand medical
knowledge and help improve clinical decision-making is evident.

Big data analytics has been proposed as a complement to rcts by performing
comparative effectiveness research (cer) [14, 15]. cer aims at measuring
differences in outcomes in large heterogeneous populations [15]. Therefore, cer

can be used to analyze the results from large observational studies to identify
specific subgroups that may benefit from a particular therapy and thus should
be recruited for a targeted rct [12]. Consequently, adaptive clinical trials could
be a possible way forward, where a trial is designed in such a way that it
can ”learn”, through big data analytics, to identify subgroups or conditions
in which the intervention could be beneficial. An example of such framework
is the randomized, embedded, multifactorial, adaptive platform (remap) trial
[14], starting to be implemented in critical care [16].
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1.2.3 Challenges

Researchers and clinicians need to be aware of the opportunities of big data
analytics, but at the same time will need to look beyond the hype. Several
challenges have to be addressed in order to use big data analytics optimally.
The first challenge refers to the proper data organization and structuring and
labeling of the data. The second challenge encompasses the translation of
the analytics to clinical practice. Finally, the acceptance of such analytics by
clinicians is the third challenge.

1.2.3.1 Databases

Proper data organization and structuring of the data is of key importance
for the use of big data analytics. At the center level, the diversity of
the data, their different modalities and the frequency of storage challenge
their integration. Although the ehr implementation has tackled part of the
difficulties, artefactual, spurious, and incomplete data are inherent to the
use of continuous non-validated monitoring data and have to be dealt with.
At the multi-center level, lack of standardization between centers leads to
further complexity as data coming from different ehr systems have to be
integrated. Therefore, development of multi-center databases amenable to big
data research requires initiatives such as the m@tric , a collaboration between
3 university hospitals from Flanders (Belgium) that contains records of more
than 9000 icu patients [17]; the mimic, a database from more than 30 000 icu

patients admitted to Beth Israel Deaconess Medical Center (Boston, ma, usa)
from 2001 to 2008 [18]; or center-tbi, a collaboration currently collecting highly
detailed information from 1800 patients with severe traumatic brain injury [19].

Early 2018, the adoption of the new European General Data Protection
Regulation (gdpr) has also affected the development of such databases.
Secondary use of personal data is now better protected. As a consequence,
the data have to be strictly anonymized and the politics on obtaining informed
consent have been strengthened.

1.2.3.2 Translation to bedside

The translation of big data analytics to the patient bedside is a necessary step to
assess the impact of the novel analytics in the clinical setting. For this purpose,
several avenues can be considered: paper charts (for simple analytics), websites,
smartphone or smartwatch apps, or software integrated into existing or new
bedside monitors. Examples of successful translations are the clinical scores or
rules derived from original research, such as the acute physiology and chronic
health evaluation (apache) to stratify disease severity or the Pediatric Index of
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Mortality (pim) score for mortality prediction. However, overall, there are few
translations from big data analytics research to the bedside [20].

A potential explanation for this lack of bedside translation is the complexity
of the task. The knowledge required to develop a software, a website or an app
is different from the data analyst skills required to develop the analytics or the
clinical expertise to understand and pose the research question. Additionally,
particular care should be given to improve end-user usability and reduce
the burden resulting from false positive alerts. Therefore, successful bedside
implementation requires a continuous collaboration between clinical experts,
statisticians, data analysts, and engineers.

Ultimately, once the analytics have been translated to the bedside, its
effectiveness has to be evaluated in a randomized controlled trial where
patients are randomized to an arm receiving treatment based on the novel
analytics or to an arm receiving normal care. Upon success, healthcare
protocols can be updated to include the novel techniques in day-to-day care.

1.2.3.3 Use in clinical settings

Finally, acceptance of big data analytics in the intensive care should not be
underestimated. Although optimization of usability will help facilitate the
translation to the bedside, precautions need to be taken when presenting the
tool to the clinical team. Indeed, a common concern is that doctors will not
be needed anymore due to development of big data analytics. This is not true.
Computer and physician must work together [10], both at the level of model
development and afterwards, when applications are turned into bedside tools.
Physicians are needed to interpret the displayed information to make decisions
[21]. Physicians will always decide on the actions to be taken. They can choose
optimally using all tools available at the bedside, including recommendations
from big data analytics [10]. Hence, instead of a replacement, big data analytics
will be a partner in patient care.

1.3 research questions

This thesis aims to develop big data decision support applications for
conditions with important clinical consequences during critical illness. The
analytics will be applied in three different fields where alternative methods
have failed to demonstrate benefit to improve patient care, or for which there is
a need for knowledge discovery: acute kidney injury, post-operative care after
corrective surgery for a congenital heart defect, and traumatic brain injury.
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Although the size of the databases used in some projects in this dissertation
are not strictly Big Data, the terms big data analytics will be used,
interchangeably with machine learning, to refer to the advanced data-driven
techniques applied throughout the thesis.

1.3.1 Acute kidney injury

Acute kidney injury (aki) is a rapid decline in estimated glomerular filtration
rate, i.e. in renal excretory function [22]. In critically ill patients, the disease
can result from several pathways, usually grouped in pre-renal, intrinsic
and post-renal categories (Figure 1.2) [22–25]. In pre-renal disease, the
glomerular filtration rate decreases following renal hypoperfusion caused by
non-renal insults such as systemic hypotension, volume depletion or cardiac
failure. Intrinsic aki is more frequently caused by an acute tubular necrosis,
usually following renal ischemia-reperfusion injury, sepsis, or nephrotoxicity
[23]. Other causes includes acute glomerulopathies, vasculitis, or interstitial
nephritis. Finally, in post-renal disease, the glomerular filtration rate decreases
following obstruction of the urinary track.

Figure 1.2 Main causes of aki.

Although the causes of aki are diverse, they are not reflected in current
approaches to its diagnosis. Indeed, aki is defined by an increase in serum
creatinine or a decline in urine output (oliguria) according to the most recent
consensus-based criteria by the international Kidney Disease: Improving Global
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Outcome (kdigo) working group [26]. kdigo stratifies aki in three stages of
ascending severity (aki 1, 2 and 3), according to the level of increase in serum
creatinine as compared to its baseline or to the level of oliguria (Table 1.1).

aki is highly prevalent in critically ill patients and is associated with
increased risk of morbidity, including development of chronic kidney disease
(ckd) or end-stage renal disease (esrd), increased risk of mortality, and with
high financial costs [22, 27–29]. Recognizing patients at risk, optimization of
hemodynamics and prevention of nephrotoxicity remain the cornerstone in the
prevention of aki [30]. Indeed, treatment is largely supportive and consists
of general measures [26]: early optimization of fluid status, maintenance
of perfusion pressure, and avoidance or discontinuation of potentially
nephrotoxic drugs. In case of severe loss of kidney function, intermittent or
continuous renal replacement therapy (rrt) can be used to filter the blood.

Early diagnosis of aki remains a major clinical challenge [31]. Its imprecise
early identification could partially explain why the search for strategies and
interventions to mitigate the course of aki has been unsuccessful [32–37]. The
aki definition is based on late and non-specific markers of the underlying
pathophysiological complication. Therefore, these markers have only a limited
ability in predicting patients at risk for aki.

aki

stage
Serum creatinine Urine output

1 1.5-1.9 * baseline or
≥0.3 mg/dl in 48h

<0.5 ml/kg/h for 6-12h

2 2.0-2.9 * baseline <0.5 ml/kg/h for ≥12h
3 ≥3 * baseline or

≥ 4.0 mg/dl or
initiation of rrt or
egfr <35 ml/min/1.73m2 in
patients aged<18y

<0.3 ml/kg/h for ≥24hr or
anuria for ≥12h

Table 1.1 aki classification [26]

Biomarkers have been proposed for aki stratification and prediction. The
most prominently studied biomarker is Neutrophil gelatinase-associated
lipocalin (ngal) [38, 39]. ngal is a protein expressed in low concentration
by the kidney, lung and gastrointestinal tissue under normal physiological
conditions. Following an ischemic or a nephrotoxic insult, ngal is up-regulated
in the kidney, thus increasing both urine and plasma ngal concentration.
Therefore, increased levels of ngal upon icu admission or during the first day
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could be an early sign of future development of aki. However, the performance
of ngal for that purpose varies from very good to unacceptable depending
on the considered patient population [33, 40, 41]. Potential explanations lie in
the nature of the protein, expressed in various tissues, hence being non-kidney
specific, and in the pathophysiology of aki, being broader than ischemia and
nephrotoxicity.

Hence, up to now, the added clinical value of ngal and of biomarkers
in general appears to be limited, their measurement timing and the optimal
population target are unclear, and their quantification costly [33, 42]. Prediction
models based on patient information routinely collected at the bedside could
be a cost-effective alternative to biomarkers for aki prognostication [31, 42, 43].

1.3.2 Post-operative care after corrective surgery for a congenital heart defect

Congenital heart defect (chd) is a structural abnormality of the heart that is
present at birth [44]. The defect may affect different parts of the heart, including
the valves, the myocardial wall and/or the great vessels. chd can be diagnosed
prenatally during the screening echography of the fetus. When chd is not
detected before birth, some children are symptomatic and pediatricians will
be alerted to actively look for the diagnosis. When asymptomatic, chd can be
a coincidental finding on physical examination, for instance when a cardiac
murmur is found on auscultation. The exact diagnosis is usually established
through echocardiography, and sometimes cardiac catheterization is necessary
[45]. In case of cyanotic defect, the blood oxygen saturation from the general
circulation is low as part of the blood bypasses the lungs and fails to be
oxygenated. In general, cyanotic diseases are associated with increased risk
of morbidity and mortality.

The incidence of chd varies across countries, likely because genetic and
environmental factors play a role in its occurrence. The overall incidence of
chd is 8-9 per 1000 live births, affecting a total of 1.35 million of newborns each
year [46]. Corrective cardiac surgery is often necessary. Before and after surgery,
patients might receive appropriate care to prevent hemodynamic deterioration
in the icu.

Although the outcome of children with congenital heart disease undergoing
cardiac surgery has improved over the past years, significant morbidity and
mortality still exist. Inadequate tissue perfusion and oxygenation are often
associated with their poor prognosis [47]. Commonly used techniques to
monitor the balance between tissue oxygen delivery and consumption are
either invasive or not-continuous [47]. In pediatric patients, because of their
small body size, invasive cardiac output monitoring is not routinely used.
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Additionally, a fall in blood pressure can be a late indicator of hemodynamic
deterioration. It has been hypothesized that non-invasive monitoring of
cerebral tissue oxygen saturation (SctO2) via a near-infrared (nir) based
cerebral oximeter could provide an early indication of critical changes in the
patient’s hemodynamic status that may adversely affect the brain [48].

Near-infrared spectroscopy (nirs) is a technique used to monitor tissue
oxygen saturation non-invasively and continuously [49]. Determination of
tissue oxygen saturation is performed by measuring the difference in intensity
between a transmitted and a received light delivered at specific wavelength
[50]. Specifically, an electrode with a light emitter and one to several receivers
are placed over the organ to be monitored (Figure 1.3). The emitter projects
nir light between 650 nm and 900 nm into the tissues, which are relatively
transparent to these wavelengths, allowing the light to penetrate several
centimeters. In the tissue, a proportion of the light will be absorbed by
chromophores with an absorption spectrum in the nir range [50].

Figure 1.3 Schematic representation of the propagation of nir light in the brain.
The orange shadow indicates the most likely traveled path by the detected photons1.

Deoxyhemoglobin, oxyhemoglobin and cytochrome c oxidase are light-
absorbing molecules involved in the oxygenation process. The principle behind
the cerebral nirs technology is to take advantage of the fact that an attenuation
in light from the nir range is caused by a change in concentration between oxy-,
deoxy-hemoglobin and cytochrome C oxidase. As each of these chromophores
present a slightly different absorption range, using different wavelengths, the
difference of concentration for each chromophore can be established.

Due to their appealing non-invasiveness, in recent years, several pediatric
icus started to use such tissue oxygen monitors for hemodynamic monitoring
[49] (Figure 1.4), as hemodynamic instabilities contribute significantly to further

1Adapted from Wikimedia Commons, Patrick J. Lynch, medical illustrator [CC BY 2.5].
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organ failure. However, there are no guidelines on how nirs monitoring
should be used in clinical practice and studies showing its benefits in post-
operative care settings are lacking [51–54]. Additionally, different brands of
nirs oximeters are not comparable as they use different algorithms, thus they
report different oxygenations levels [55]. Although a non-invasive monitor that
provides early signs of hemodynamic deterioration would clearly be an asset, a
study showing the performance of SctO2 for this purpose is currently lacking.

Figure 1.4 Example of nirs monitoring in the pediatric intensive care unit (picu).

Whether nirs cerebral oximetry can detect or foresee potentially deleterious
events of impaired brain perfusion and oxygenation during icu stay, and
whether these events are independently associated with worse clinical
outcomes, remains unclear in pediatric postoperative care.

1.3.3 Traumatic brain injury

Traumatic brain injury (tbi) is defined as an alteration in brain function, or
other evidence of brain pathology, caused by an external force [56]. This can
occur in traffic, at home, at work, during sports activities, or on the battlefield.
This results in tbi being one of the most important health care problems
worldwide. The World Health Organization estimates that it will surpass many
diseases as the major cause of death and disability by 2020 [57]. tbi affects
approximately 2.5 million people each year and yields 75 000 deaths [58]. In
the United States only, the annual burden of tbi is estimated more than $75

billion [59].

tbi varies in severity from mild (including concussion) to moderate and
severe tbi (Glasgow Coma Scale ≤ 8) [60]. In the hours and days following
the initial traumatic insult (or primary injury), destructive and self-propagating
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biological changes in the brain can lead to subsequent additional damage,
referred to as secondary injury [61]. Prevention and treatment of secondary
injury is the main goal of neuro-critical care in patients with tbi, and for that
purpose, continuous and usually invasive monitoring is applied. Because the
brain is enclosed and protected by the rigid skull, added intracranial volume,
caused for example by hemorrhage or brain edema, will eventually lead to
a rise in intracranial pressure (icp). The cerebral perfusion pressure (cpp) is
the driving pressure gradient for blood to enter the brain, calculated as the
difference between mean arterial blood pressure (map) and icp. When cpp is
critically low, brain perfusion is at risk, leading to secondary ischemic injury.

International guidelines for the management of critically ill patients with tbi

emphasize the prevention of secondary insults, and for patients with severe tbi,
optimization of cardiorespiratory physiology, control of icp, and maintenance
of cpp [62, 63]. To this end, icu management (Table 1.2) consists of sedation,
hyperosmotic infusions, hyperventilation, drainage of cerebrospinal fluid, or
temperature control. Additional more aggressive measures are referred to as
third-tier therapies and involve aggressive cooling, deep sedation, intensive
hyperventilation, and decompressive craniectomy [64]. All these treatments
have potential side effects that have to be taken into account when deciding
on patient therapy. In particular, third-tier therapies should be considered as
last resort therapies in case all other options have been exhausted.

A number of neuromonitoring modalities are available to detect secondary
brain injuries, the most used being icp monitoring. icp is usually monitored
using an invasive intraparenchymal or intraventricular catheter. Some
techniques have been introduced to monitor icp non-invasively [66]. Albeit
promising, they suffer from drawbacks, being intermittent monitoring or lack
of clinical validation, which limit their clinical application [65]. Consequently,
due to the risks associated with invasive monitors, icp monitoring in only
recommended in patients with a severe tbi.

International guidelines recommend icp lowering therapies at a threshold
of 20-25 mmHg, based on data from observational studies where increased
icp is clearly associated with worse outcomes [61, 63, 67–69]. However, it has
been observed that too aggressive icp management might lead to an increased
use of sedatives, barbiturates, vasopressors, and fluids, possibly prolonging
mechanical ventilation and icu stay without necessarily improving outcome
[70]. In addition, randomized controlled trials in patients with tbi have failed to
demonstrate the outcome benefit of aggressive strategies aimed at keeping the
icp below 20 mmHg [71, 72]. Although most experts agree that icp monitoring
should still be standard after severe tbi [73], there is an urgent need for better
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Therapeutic measure Effect
Sedation To decrease metabolic activity
Drainage of cerebrospinal fluid To reduce intracranial volume
Hyperosmolar therapy To reduce brain oedema
Hyperventilation To reduce intracranial volume

through hypocapnic cerebral
vasoconstriction

Deep sedation To achieve deep metabolic
suppression

Intensive hyperventilation To further reduce intracranial volume
through hypocapnic cerebral
vasoconstriction

Decompressive craniectomy To accommodate brain swelling by
removing a portion of the skull

Temperature control / Aggressive
cooling

Various effects, including decrease of
metabolic activity

Table 1.2 Therapeutic measures with their intended actions in tbi management,
ordered from the least aggressive (top) to the most aggressive (bottom) [65].

definitions of secondary insults and of therapeutic thresholds for icp [65, 70,
74].

To this end, several avenues can be considered. First, not merely an icp

rise above a certain threshold, but rather the cumulative dose, referring to the
combination of icp duration and intensity, is associated with poor neurological
outcome [75–77]. The icu research group from UZLeuven has investigated the
association between the Glasgow Outcome Score (gos) and the dose of elevated
icp in subpopulations of adult and pediatric tbi patients [78]. They found an
exponential transition curve between the zones associated with good (higher
gos categories) or poor (lower gos categories) neurological outcomes (Figure
1.5), suggesting that secondary brain insults are defined by both intensity and
duration of episodes of increased icp. The term icp-insult refers to such an icp

dose associated with worse clinical outcomes.

Second, cerebrovascular pressure autoregulation (car), which refers to the
physiological mechanism by which the brain is able to maintain a constant
cerebral blood flow, likely plays a role in the capacity to tolerate insults
of increased icp or reduced cpp [79–82]. car is often impaired in patients
with severe tbi [66, 83–86]. Computational methods can be used to assess
the dynamic rate of car continuously, such as the Pressure Reactivity Index
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Figure 1.5 Visualization of correlation between gos and average number of icp doses
per gos category [78].

Dark red episodes mean that such icp doses, on average, are associated with worse outcome;
dark blue episodes mean that such icp doses, on average, are associated with better outcome.
The black line corresponds to the transition curve between regions of good or poor outcomes.

(prx) [79], or the Low Frequency Autoregulation Index (lax) [80]. These
indices are calculated as a moving correlation coefficient between icp and map,
respectively sampled at a higher and a lower frequency. Other available indices
of cerebral autoregulation exist such as the mean flow index (mx). This index
is derived from the association between cerebral blood flow estimated using
transcranial Doppler and either cerebral perfusion pressure (mxc) or arterial
blood pressure (mxa) sampled at high frequency. Studies have demonstrated
that prx or mx greater than 0.3 indicates impaired autoregulation and lower
than 0-0.05 functional autoregulation [87, 88]. The interval between 0-0.05 and
0.3 is referred to as a ”grey zone” as no clear association with outcome emerged.
The ability to tolerate episodes of elevated icp is significantly reduced when
car is impaired [78].

Third, icp and cpp thresholds are likely not the same in all age groups.
Indeed, lower thresholds have been identified for children in an observational
study [76] and retrospectively [78].

Therefore, there is an urgent need for better understanding of secondary
insults and of therapeutic thresholds in terms of icp and car, in pediatric and
adult populations.
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1.4 development of clinical prediction models

The development of the big data analytics applications for the three conditions
previously described will require the implementation of supervised prediction
models. Therefore, the current section will focus on detailing how such models
are developed.

In the case of supervised classification, the aim is to categorize unseen data
to a class label, e.g. predicting whether a newly admitted critically ill patient
will be discharged the next day [89]. The development of the prediction model
starts by gathering some labeled data. Each data entry consists of a collection of
variables (i.e. features), and a specific class label (Figure 1.6). In the case of the
discharge prediction, the dataset consists of a list of patients together with their
related information (demographics, clinical data measured upon icu admission,
etc.), together with their class label, i.e. whether the patient was discharged
the next day. The first step will be to select a subset of features relevant for
the problem of interest; this process is called feature selection. After or in
combination with feature selection, a machine-learning algorithm is chosen to
perform the classification. The learning algorithm creates a model to predict
the outcome (e.g. discharge the next day: yes or no) using the relevant features.
The data on which the algorithm learns is called the training or development
cohort. After learning, the model is able to classify unseen instances. The
performance of the model is evaluated using a testing set composed of a cohort
of labeled examples the model has not seen yet. At the level of feature selection
and/or learning, internal validation techniques can be used to ensure that the
model will be valid outside the specific dataset on which it has been developed.
Finally, to assess whether the model is generalizable, its performance should
be assessed in a validation cohort; a process called external validation.

Figure 1.6 Example of development cohort.
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Figure 1.7 schematizes the different steps of development of a prediction
model. Each of the steps is described in the following sections.

1.4.1 Feature selection

During the modeling process, a right balance has to be found between a good
fit of the model and good generalizability, i.e. achieving similar performance in
unseen data. A possible problem when developing a model is that the model
gets really good at predicting cases from which it has learned, i.e. model
performance is good in the development cohort but not in unseen data. This
problem is called overfitting.

The variables included in the prediction model are named features. The
higher the number of features from the development cohort included in the
model, the higher the chances the model will overfit (Figure 1.8).

To select the modeling features of interest, several avenues can be considered.
First, prior clinical knowledge can be used to make a first selection of relevant
features. For instance, in the case of the prediction of a medical complication,
a thorough literature search can identify the features already known to be
associated with the complication. Second, in case of secondary use of data from
a retrospective study, the size of the database will limit the number of features
available for modeling. Finally, statistical techniques such as stepwise feature
selection can be used to determine a subset of the features most associated with
the outcome of interest.

Stepwise feature selection are automated statistical methods to include only
the most significant features in the model. Significance of the features are
determined based on, among others, P-values for logistic regression or feature
importance for decision trees (further explained in section 1.4.2). The stepwise
process consists of learning a model with a different number of features at each
step. Three different types of stepwise selection exist: forward, backwards and
forward-backwards.

In forward feature selection, the model starts without any feature and
the most significant feature is included at each step. In backward feature
elimination, the model starts including all available features and the least
significant feature is removed at each step. Finally, in forward-backwards
feature selection, forward selection and backward elimination are combined
in an iterative procedure.

It is necessary to define a stopping criterion for further inclusion/removal of
features. Such stopping criterion can be based on the feature significance, for
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Figure 1.8 Example of feature selection.
Selection of the features that are relevant for the outcome of interest to ensure good
generalizability. The subset of selected features corresponds to the columns highlighted in
orange.

instance P-value > 0.05 in forward selection, or on the model performance, for
instance no further improvement in discrimination.

In this thesis, backwards feature elimination will be preferred to the forward
procedure, as it takes into account multivariable associations. For instance,
having a low body mass index (bmi) can be associated with high risk
of premature death but having a low bmi and having a healthy lifestyle
significantly reduce this risk [90]. Additionally, the stopping criterion will
usually be based on model performance: features will be removed if the drop
in model discrimination (further explained in section 1.4.3) is not statistically
significant (P-value>0.05).

1.4.2 Data mining algorithms

Data mining algorithms are tools to extract patterns from data by combining
methods from computational statistics and machine learning [91]. These
algorithms are able to learn and model new data without explicitly being
programmed. Several of these algorithms are referred to as black box as their
interpretability is limited or impossible. Only interpretable algorithms have
been used in this thesis and are described in the following sections.

logistic regression Logistic regression is one of the most simple
machine learning algorithms and is commonly used in medical research, as
its interpretation is simple. It is used to estimate the probability that an event
will occur by modeling the binary outcome as a function of the feature variables
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using a logistic function (Figure 1.9). Mathematically, the probability that a data
instance x belong to class y = 1 is given by

P(y = 1|x) = F
( l

∑
k=0

wkxk

)
where F(x) is the logistic function (Figure 1.9) and wk are the weights given to
the features xk.

Figure 1.9 Plot of the logistic function f (x) = 1
1+e−x .

The probability that an event will occur divided by the probability that
it will not occur is called the odds. The change of odds of an outcome is
measured using odds ratio. The coefficient of each feature in the logistic
regression determines the odds ratio for the outcome associated with a 1-unit
change of the considered feature variable. Therefore, the odds ratio provides a
measure of the magnitude of the association of each feature with the outcome.
As such, logistic regression can be used to adjust for confounding factors to
assess whether the association between the feature of interest and the outcome
remains or is distorted by the confounding factor(s) [92]. A logistic regression
with multiple features is referred to as multivariable logistic regression.

Logistic regression has several limitations [92]. First, the method assumes the
features are independent from each other. In case several features are collinear
(i.e. they carry overlapping information), a minor change in one of these
features can have a considerable and unpredictable impact on the odds ratio of
the other feature(s). Second, logistic regression assumes that the log of the odds
ratio of each feature is linearly associated with the outcome. Therefore, each
feature is expected to have the same magnitude of association with the outcome
across its entire range. When this is not the case, transforming the continuous
feature in categorical features is necessary. For instance, age does not have a
consistent association with mortality and age may need to be split in categories
< 50y, 50-60y, 60-70y, >80y. Logistic regression is therefore also sensitive to
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Figure 1.10 Example of a decision tree from the game ”guess who”.

outliers. Third, logistic regression is unable to model interaction terms, i.e.
when the modification of a value of a feature affects another feature. Therefore,
interaction terms have to be identified and explicitly encoded as features. These
limitations have to be taken into consideration when interpreting the odds
ratio. Additionally, when its assumptions are not met, more complex predictive
modeling algorithm should be considered.

decision trees A decision tree is a tree-based classifier [93]. Its structure is
similar to how humans perform classification. For instance, in the game “Guess
Who?”, each player tries to deduce a selected character by asking questions
once at a time. The organization of these questions follows a decision tree
(Figure 1.10). The sequence of questions leads to classifying each character
between being the person of interest or not. In this particular scenario, only
one character is selected.

A decision tree starts at a root node where a question is answered to split the
data to be classified, in two distinct branches. The answer will lead to the next
node where the data are further split by an additional question (decision rule).
Data will be split until reaching a terminal node (leaf node) where the data are
assigned to a particular class.

Several algorithms exist to construct decision trees automatically, based on
the training data [91, 93]. Generally, trees are built in a recursive fashion.
At each node, a decision rule is selected to split the data, randomly or by
maximizing a particular split criterion such as the information gain or the Gini
impurity. The two datasets created from the split are recursively split, creating
different levels of nodes. When reaching a stopping criterion, a leaf node is
created with the remaining data and assigned to a class. The stopping criterion
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can be specified as the maximum depth of the tree, the minimum number of
samples to split a node, the minimum number of samples per leaf, or it can
be based on the split criterion among others. When no stopping criterion is
specified, the tree is created until each leaf contains a single data point or a
group of data points belonging to a similar class.

Decision trees can handle non-linear and multi-output problems. One of
their main advantages is that they are easily interpretable and they can be
visualized. Their drawback is that they tend to overfit by creating over-complex
trees if it is allowed to become too deep. Pruning can be used to reduce the
complexity of the tree, by removing sections of the tree that carry little power
to classify data. To reduce further the chance of overfitting, one can specify
to use only a limited number of features to build the decision rule at each
node. An additional disadvantage is that decision trees are unstable as a small
variation in the training data can lead to the modeling of a completely different
tree.

random forests Random forests belong to the category of ensemble
algorithms, which combines multiple machine-learning algorithms to improve
their performance. As its name suggests, a random forest is a combination
of decision trees [94]. Performance and robustness are improved by building
each decision tree on a bootstrap replica (i.e. random selection of samples
with replacement, explained in section 1.4.4) from the development set and
by averaging the predicted probabilities of the different trees. Therefore, an
additional optimization parameter to reduce overfitting is the number of trees
contained in the forest, in addition to the tree-specific parameters. Random
forests are very popular in particular thanks to their robustness to noise. An
example of random forest is illustrated in Figure 1.11.

1.4.3 Evaluation metrics

Once the prediction model has been developed, its performance needs to be
evaluated. Several statistical metrics can be used for that purpose. Each of them
reports information on the model’s capabilities and weaknesses, and they can
be grouped in different categories: discrimination, calibration and net benefit.

As illustrated in Table 1.3, a correct classification by the model is called true
positive (tp) or true negative (tn), respectively if the actual outcome is positive
or negative. An incorrect classification by the model is called fp or fn, when
the actual outcome is negative or positive, respectively.

Discrimination refers to how well the predictions allow to discriminate
between the patients with and without the outcome. Traditional measures of
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Figure 1.11 Example of a random forest with majority voting.

Actual condition
True False

True tp fp

Predicted condition
False fn tn

Table 1.3 Type of classification.

discrimination include sensitivity, specificity, positive predictive value (ppv)
and negative predictive value (npv). These measures require choosing a
threshold to classify patients as having a low or high risk of developing the
outcome of interest. Hence, above this classification threshold, the score is
positive. Sensitivity is the ability of the model to identify correctly the patients
with the outcome of interest. Specificity is the ability of the model to identify
correctly the patients without the outcome of interest. The ppv reflects how
likely it is that a patient has the outcome of interest given that the predicted
probability is higher than the classification threshold. Finally, the npv reflects
how likely it is that a patient does not have the outcome of interest given that
the predicted probability is lower than the classification threshold.

Sensitivity =
tp

tp + fn

Specificity =
tn

tn + fp

ppv =
tp

tp + fp

npv =
tn

tn + fn
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Figure 1.12 Illustration of roc curve and ds.
(a) roc curve of a prediction model with its 95% confidence interval. The dot on the curve
shows the classification threshold maximizing sensitivity and specificity. Finally, the dotted line
represents the roc curve of a randomly guessing model. (b) Boxplot separating the predicted
probabilities by the model according to their class label. The ds of the model corresponds to
the differences between the mean predictions from the two classes.

Discrimination can also be evaluated visually with the receiver operating
characteristic (roc) curve, and quantified with the area under the receiver
operating characteristic curve (auroc) and the discrimination slope (ds). The
roc curve plots the sensitivity versus 1-specificity for all possible classification
thresholds (Figure 1.12a). The classification threshold maximizing sensitivity
and specificity can be calculated from the roc curve as the point closest to the
upper left corner. The ds (Figure 1.12b) measures how well the patients with
(label=1) and without (label=0) the outcome are separated. It is calculated as
the absolute difference in average predictions for those with and without the
outcome. ds ranges from 0 (no discrimination) to 1 (complete discrimination).
Finally, the integrated discrimination index (idi) [95] can be used to compare
discrimination between two models in the same patient subset. The idi is the
difference between the models’ discrimination slopes and is preferred to the
continuous net reclassification index (nri) when no clear classification cut-off
exists [96].

A perfectly discriminating model would maximize sensitivity and specificity
and have an auroc close to 1. In practice, aurocs above 0.7 are considered
adequate [97]. A well discriminating model therefore has higher predicted
probabilities for patients with the outcome of interest and lower probabilities
for patients without, which translates to a large ds. Alternatively, a trivial
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model that consists in randomly guessing the outcome is represented with a
curve close to the diagonal on the roc curve and an auroc close to 0.5. This
trivial model would have similar predictions for patients with and without the
outcome of interest, resulting in a ds close to zero.

Calibration refers to the agreement between the population outcomes
and the model predictions. For example, if the observed frequency of the
outcome of interest is 30 out of 100 patients in the population, a well-
calibrated model should predict a 30% risk of developing this outcome for
these 100 patients. Calibration can be evaluated visually with calibration
curves, which plot the observed proportions in the population versus the
model predicted probabilities, or with calibration belts that additionally shows
the confidence interval around the curve (Figure 1.13) [98]. The observed
proportions in the population are calculated in bins, using a loess algorithm
that regresses the binary outcome of each patient into probabilities [99].
Calibration can additionally be quantified by the intercept (calibration-in-the-
large) and the slope (calibration-slope) of a linear regression fitted to this curve.
When calibration belts are reported, a statistically significant difference from
perfect calibration is calculated by a calibration test (P-value<0.05). Finally, a
histogram of the predicted probabilities corresponding to the positive outcome
of interest (top) and of predicted probabilities corresponding to negative
outcome of interest (bottom) can be represented together with the calibration
curve (Figure 1.13)

A well-calibrated model shows strong agreement between the population
observed proportions and the probabilities given by the model. Therefore, it
has a calibration curve close to the diagonal (calibration test P-value ≥ 0.05), a
calibration-slope close to 1, and a calibration-in-the-large close to 0.

The clinical usefulness of a prediction model refers to the potential clinical
benefit achieved by using this model. In particular, it is important to report the
clinical usefulness if the harm of misclassifying a patient without the outcome
is different from the one of misclassifying a patient with the outcome, or if the
benefit of classifying a patient with the outcome is different from the one of
classifying a patient without the outcome.

The clinical usefulness can be quantified using the net benefit (nb). nb is the
difference between the expected benefit and the expected harm associated with
the classification, as shown in the equation below.

nb =
tp

n
− fp

n
∗ pt

1− pt

where n is the size of the dataset, the expected benefit (tp

n ) is the percentage of
patients who have the outcome and were classified as such (true positives) and
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Figure 1.13 Illustration of calibration belt.
Example of calibration belt with the distribution of predictions, from the analysis presented
later in Chapter 4. The blue curve shows the calibration curve with its 95% confidence interval
(belt). The dotted line represents perfect calibration. Finally, the distribution of predicted
probabilities is shown at the bottom of the graph.

who will therefore benefit from the treatment or measures taken to improve
their care, and the expected harm (fp

n ∗
pt

1−pt
) is the percentage of patients who

will be wrongly treated because they were classified as having the outcome
(false positives) multiplied by a weighting factor depending on the classification
threshold (pt). The classification threshold (also called risk threshold) is chosen
depending on the relative weight of harm and benefit associated with the
classification. For instance, if the treatment associated with having the outcome
can be considered harmful (e.g. has undesirable side effects, is very costly, etc.)
it is important to have few false positive classifications; this corresponds to
using a high classification threshold. Alternatively, if the treatment associated
with having the outcome is benign, the number of false positive classifications
is less important; this corresponds to using a low classification threshold. The
weight given to any potential harm or benefit associated with the actions
resulting from a classification is center, patient and task dependent, and
therefore so is the choice of classification threshold.

The clinical usefulness can be visualized using decision curves (Figure
1.14). These decision curves plot the net benefit at each possible classification
threshold [100]. For a model to be clinically useful at a given threshold it
must have a positive nb, which means that it should improved as compared to
trivially classifying all patients as not having the outcome (referred to as treat-
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none strategy). In Figure 1.14, the treat-none curve corresponds to the line of 0

net benefit. The difference between the models’ nb and the nb of classifying all
patients as not having the outcome (treat-none strategy) is denoted ∆ nbNone.
Second, it must have a higher net benefit than trivially classifying all patients
as having the outcome (referred to as treat-all strategy). The difference between
the model nb and the nb of classifying all patients as having the outcome (treat-
all strategy) is denoted ∆ nbAll.

Figure 1.14 Example of a decision curve.
The dot on the curve shows the net benefit of the classification threshold identified in the roc
curve and maximizing sensitivity and specificity. The treat-all and treat-none lines corresponds
to the net benefit achieved when considering that, respectively, all or no patients will develop
the predicted outcome. For a particular classification threshold, the nb represents the fraction
of patients who will get correctly detected without increasing the number of false positives.

Clinically useful models have larger net benefits than the two trivial
strategies for all relevant classification thresholds. The wider the range of
clinical usefulness, the more versatility the model offers, as it can be used with
a larger number of different classification thresholds. Decision curves therefore
allow for a straightforward visual comparison between the clinical usefulness
of different models designed for the same task.

1.4.4 Validation techniques

When developing a model, one needs to ensure that this model is valid outside
the specific data set on which it has been developed. In other words, one needs
to assess whether the model is generalizable.
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Internal validation techniques, such as cross-validation or bootstrapping,
can be used to reduce bias in estimating model performance and thus help
prevent overfitting. In cross-validation, the development set is split into k
equally sized partitions (folds). Model training is performed k times using
all folds but one, which is kept for testing (Figure 1.15). In leave-one-out
cross validation, the number of folds k is equal to the number of samples in
the development set. Therefore, testing is performed on each single sample
individually. One of the main drawback of cross-validation is that by splitting
the development set in folds, power is lost by decreasing the sample size. This
technique is not recommended on small datasets.

Figure 1.15 Example of 3-fold cross-validation.
The development cohort is split in 3 folds. Iteratively, two of them are used for training and
one for testing. The overall performance is calculated by averaging the performance obtained
from the 3 models.

In bootstrapping, bootstrap replicas of the same size as the development
set are drawn by selecting samples randomly with replacement from the
development set (Figure 1.16). A model is trained on each bootstrap replica and
tested on the initial development set. The average performance of the trained
models on the development set is an estimate of the performance in an unseen
population. The confidence interval of the performance provides an estimate
of the stability of the model: tight confidence intervals are synonymous with
good stability.

A more accurate estimation of the model performance can be obtained
by correcting for optimism [101]. Several variants exist, including the 0.632

method [102, 103]. In 0.632 bootstrapping (Figure 1.17), bootstrap replicas are
created using the aforementioned methodology: a random selection of samples
with replacement from the development set. Using this random process,
approximatively 63.2% of the samples will be included in each bootstrap replica.
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Figure 1.16 Example of bootstrapping.
A large number (n) of bootstrap replicas are created from the initial population. Each bootstrap
replica is used to train a model, whose performance is tested in the development cohort. The
overall performance is calculated by averaging the performance obtained for the n models.

The remaining samples are called the out-of-bag samples. A model is trained
on each bootstrap replica and tested on the out-of-bag samples. An estimate of
the performance (Performanceest) corrected for optimism can be obtained using
the following formula:

Performanceest = Performanceapp–0.632(Performanceapp–Performanceoob)

Where Performanceapp represents the performance of a model trained on the
development set and tested on the same dataset and Performanceoob represents
the performance in the out-of bag sample of a model trained on the bootstrap
replica.

By calculating the average of the estimated performance on a large number
of bootstraps replicas, a stable estimation of model performance in an unseen
population can be obtained. This technique was applied in [104]. The bootstrap
approach can be applied to any performance metric. In this thesis, it will be
used to report auroc [103], net benefits and calibration slopes, among others.

To improve the internal validation process, the bootstrap technique can be
implemented at the level of feature selection, in addition to the level of model
training. Ideally, feature selection will take place in each bootstrap replica
to strengthen the stability of the findings and further decrease the risk of
overfitting.

Internal validation techniques are necessary to obtain an honest impression
of the model performance in a similar population. However, one can only be
certain of the model’s generalizability by assessing the model’s performance
in an unseen population. This process is referred to as external validation, a
crucial but unfortunately uncommon step to validate prediction models [105].
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Figure 1.17 Example of 0.632 bootstrapping.
A large number (n) of bootstrap replicas are created from the initial population. Each bootstrap
replica is used to train a model, whose performance is tested in the out-of bag (oob)
samples. The estimated performance for each bootstrap replica is calculated by subtracting the
optimism from the performance obtained on the development cohort. The overall performance
is calculated by averaging the estimated performance obtained for the n models.

The interaction between internal and external validation is schematized in
Figure 1.7.

Ideally, the unseen population (validation cohort) is similar to the one from
the development set but from a different geographical area, and/or from
a different time. In case the unseen population corresponds to a different
population, assessing model performance will allow identifying whether
adjustments, such as model recalibration, have to be applied to use the model
in this new population, or whether the specific model should not be used in
such population. For instance, in chapter 3, we developed a model for acute
kidney injury in an heterogeneous icu population and found that the model
achieved poorer performance in a population of septic patients.

Sample size is important for both internal and external validation. For
internal validation, having sufficient sample size and using a large number
of bootstrap replicas is necessary to ensure avoiding overfitting. For external
validation, if the sample size is too low, it may result in concluding wrongly
that a model performs satisfactorily [106].
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Comparison of the performance of different models using external validation
can be assessed using bootstrap-generated confidence intervals. First, the
performance of each model is calculated for each bootstrap. Second, the
distribution of the difference in performance between the models is drawn.
Finally, a significant difference at an alpha level of 5% is found if 0 is not
included in the 95% confidence interval of the distribution. In this thesis,
bootstrap-generated confidence intervals will be used to assess the difference
in model discrimination during external validation.

1.5 thesis overview

This thesis is divided into three main parts, each related to a different condition
of critical illness. A flowchart of the thesis chapters and the translation of
their findings into bedside clinical application can be found in Figure 1.18. The
first part is related to the early detection of acute kidney injury and includes
Chapters 3 and 4. The second part reports the results of a prospective blinded
observational study on the use of near-infrared-based cerebral oximetry in
critically ill children, and it includes Chapters 5 and 6. The last part is related to
the visualization of secondary brain injuries in patients with a severe traumatic
brain injury and it includes Chapters 7 and 8. In detail,

chapter 2 lists the specific objectives of the thesis.

chapter 3 describes the development and validation of AKIpredictor,
a machine-learning-based prognostic calculator for acute kidney injury in
critically ill adults. It compares its performance against ngal, one of the most
studied biomarkers for aki prognostication.

chapter 4 studies the clinical application of AKIpredictor by validating the
model in an observational prospective study and comparing its performance
with the estimated aki risk by clinicians.

chapter 5 introduces new statistical metrics of near-infrared-based cerebral
oximetry and reports their association with acute outcomes in critically ill
children after cardiac surgery.

chapter 6 presents a prediction model for acute kidney injury based on
routinely collected data from critically ill children after cardiac surgery and
analyzes the added value of the near-infrared-based cerebral oximeter.



1.5 thesis overview 33

chapter 7 investigates secondary brain injuries in terms of impaired
cerebral autoregulation and present a visualization of their association with
6-month neurological outcomes.

chapter 8 presents the development of a prototype software for
visualization of secondary brain injuries from intracranial hypertension and
impaired cerebral autoregulation, to be used at the bedside of patients with a
severe traumatic brain injury.

chapter 9 summarizes the main findings of this thesis and presents
directions for future research or valorization avenues.

Figure 1.18 Thesis overview.
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[20] F. Güiza, J. Van Eyck, and G. Meyfroidt. Predictive data mining on
monitoring data from the intensive care unit. J. Clin. Monit. Comput. 27,4
(Aug. 2013), pp. 449–53.

[21] J. Labarère, B. Renaud, R. Bertrand, and M. J. Fine. How to derive and
validate clinical prediction models for use in intensive care medicine.
Intensive Care Med. 40,4 (Apr. 2014), pp. 513–27.

[22] R. Bellomo, J. A. Kellum, and C. Ronco. Acute kidney injury. Lancet
380,9843 (Aug. 2012), pp. 756–766.

[23] N. H. Lameire et al. Acute kidney injury: An increasing global concern.
Lancet 382,9887 (2013), pp. 170–179.

[24] J. A. Kellum and J. R. Prowle. Paradigms of acute kidney injury in the
intensive care setting. Nat. Rev. Nephrol. 14,4 (Jan. 2018), pp. 217–230.

[25] E. Macedo and R. L. Mehta. Prerenal failure: from old concepts to new
paradigms. Curr. Opin. Crit. Care 15,6 (2009), pp. 467–473.

[26] Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney
Injury Work Group. KDIGO Clinical Practice Guideline for Acute
Kidney Injury. Kidney Int. Suppl. 2,2 (June 2012), pp. 1–138.

[27] J. Gunst et al. Impact of Early Parenteral Nutrition on Metabolism and
Kidney Injury. J. Am. Soc. Nephrol. 24,6 (June 2013), pp. 995–1005.

[28] M. Joannidis et al. Acute kidney injury in critically ill patients classified
by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med.
35,10 (2009), pp. 1692–1702.

[29] S. Nisula et al. Incidence, risk factors and 90-day mortality of patients
with acute kidney injury in Finnish intensive care units: the FINNAKI
study. Intensive Care Med. 39, (2013), pp. 420–8.

[30] M. Joannidis et al. Prevention of acute kidney injury and protection of
renal function in the intensive care unit. Intensive Care Med. 36,3 (Mar.
2010), pp. 392–411.



bibliography 37

[31] S. M. Sutherland et al. Utilizing electronic health records to predict acute
kidney injury risk and outcomes: workgroup statements from the 15th
ADQI Consensus Conference. Can. J. Kidney Heal. Dis. 3,1 (Dec. 2016),
p. 11.

[32] L. S. Chawla, P. W. Eggers, R. A. Star, and P. L. Kimmel. Acute Kidney
Injury and Chronic Kidney Disease as Interconnected Syndromes. N.
Engl. J. Med. 371,1 (July 2014), pp. 58–66.

[33] M. Ostermann and M. Joannidis. Biomarkers for AKI improve clinical
practice: no. Intensive Care Med. 41,4 (Apr. 2015), pp. 618–622.

[34] F. T. Billings et al. High-Dose Perioperative Atorvastatin and Acute
Kidney Injury Following Cardiac Surgery. JAMA 315,9 (Mar. 2016),
pp. 877–888.

[35] A. X. Garg et al. Perioperative Aspirin and Clonidine and Risk of Acute
Kidney Injury: A Randomized Clinical Trial. JAMA 312,21 (Dec. 2014),
pp. 2254–2264.

[36] P. Young et al. Effect of a Buffered Crystalloid Solution vs Saline on
Acute Kidney Injury Among Patients in the Intensive Care Unit. JAMA
314,16 (Oct. 2015), pp. 1701–1710.

[37] F. P. Wilson et al. Automated, electronic alerts for acute kidney injury: a
single-blind, parallel-group, randomised controlled trial. Lancet 385,9981

(May 2015), pp. 1966–1974.

[38] D. Shemin and L. D. Dworkin. Neutrophil gelatinase–associated
lipocalin (NGAL) as a Biomarker for Early Acute Kidney Injury. Crit.
Care Clin. 27,2 (Apr. 2011), pp. 379–389.

[39] K. Kashani et al. Discovery and validation of cell cycle arrest biomarkers
in human acute kidney injury. Crit. Care 17,1 (Jan. 2013), R25.

[40] J. Mishra et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a
biomarker for acute renal injury after cardiac surgery. Lancet 365,9466

(Apr. 2005), pp. 1231–1238.

[41] Z. Zhang. Biomarkers, diagnosis and management of sepsis-induced
acute kidney injury : a narrative review. Hear. Lung Vessel. 7,1 (2015),
pp. 64–73.

[42] R. Bellomo et al. Acute kidney injury in the ICU: from injury to recovery:
reports from the 5th Paris International Conference. Ann. Intensive Care
7,1 (Dec. 2017), p. 49.

[43] S. Sutherland, S. Goldstein, and S. Bagshaw. Acute Kidney Injury and
Big Data. Contributions to nephrology 193, (2018), p. 55.



38 bibliography

[44] J. I. Hoffman and S. Kaplan. The incidence of congenital heart disease. J.
Am. Coll. Cardiol. 39,12 (2002), pp. 1890–1900.

[45] R. Sun, M. Liu, L. Lu, Y. Zheng, and P. Zhang. Congenital Heart Disease:
Causes, Diagnosis, Symptoms, and Treatments. Cell Biochem. Biophys.
72,3 (July 2015), pp. 857–860.

[46] A. C. Fahed, B. D. Gelb, J. G. Seidman, and C. E. Seidman. Genetics of
congenital heart disease: The glass half empty. Circ. Res. 112,4 (2013),
pp. 707–720.

[47] G. V. Parr, E. H. Blackstone, and J. W. Kirklin. Cardiac performance and
mortality early after intracardiac surgery in infants and young children.
Circulation 51,5 (1975), pp. 867–874.

[48] H. M. Phelps et al. Postoperative cerebral oxygenation in hypoplastic
left heart syndrome after the Norwood procedure. Ann. Thorac. Surg.
87,5 (May 2009), pp. 1490–4.

[49] N. S. Ghanayem and G. M. Hoffman. Near Infrared Spectroscopy as
a Hemodynamic Monitor in Critical Illness. Pediatr. Crit. Care Med. 17,
(2016), S201–S206.

[50] J. M. Murkin and M. Arango. Near-infrared spectroscopy as an index
of brain and tissue oxygenation. Br. J. Anaesth. 103,Supplement 1 (2009),
pp. i3–i13.

[51] J. S. Tweddell, N. S. Ghanayem, and G. M. Hoffman. Pro: NIRS
is ”Standard of Care” for postoperative management. Semin. Thorac.
Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13,1 (2010), pp. 44–50.

[52] J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney. Near infrared
spectroscopy (NIRS) should not be standard of care for postoperative
management. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu.
13,1 (2010), pp. 51–54.

[53] J. M. Kane and D. M. Steinhorn. Lack of irrefutable validation does
not negate clinical utility of near-infrared spectroscopy monitoring:
Learning to trust new technology. J. Crit. Care 24,3 (2009), 472.e1–472.e7.

[54] J. Steppan and C. W. Hogue. Cerebral and tissue oximetry. Best Pract.
Res. Clin. Anaesthesiol. 28,4 (2014), pp. 429–439.

[55] C. Schmidt et al. The effects of systemic oxygenation on cerebral oxygen
saturation and its relationship to mixed venous oxygen saturation:
A prospective observational study comparison of the INVOS and
ForeSight Elite cerebral oximeters. Can. J. Anesth. Can. d’anesthésie 83,
(Feb. 2018).



bibliography 39

[56] G. T. Manley and A. I. R. Maas. Traumatic Brain Injury: An International
Knowledge-Based Approach. Jama 310,5 (2013), pp. 473–4.

[57] A. A. Hyder, C. A. Wunderlich, P. Puvanachandra, G. Gururaj, and O. C.
Kobusingye. The impact of traumatic brain injuries: a global perspective.
NeuroRehabilitation 22,5 (2007), pp. 341–353.

[58] A. I. Maas et al. Collaborative European NeuroTrauma Effectiveness
Research in Traumatic Brain Injury (CENTER-TBI). Neurosurgery 76,1
(2015), pp. 67–80.

[59] V. G. Coronado et al. Trends in traumatic brain injury in the US and the
public health response: 1995–2009. J. Safety Res. 43,4 (2012), pp. 299–307.

[60] A. I. R. Maas et al. Traumatic brain injury: integrated approaches to
improve prevention, clinical care, and research. Lancet Neurol. 4422,17

(2017).

[61] K. N. Corps, T. L. Roth, and D. B. McGavern. Inflammation and
Neuroprotection in Traumatic Brain Injury. JAMA Neurol (Jan. 2015).

[62] Brain Trauma Foundation. Guidelines for the Management of Severe
Traumatic Brain Injury 3rd Edition. J. Neurotrauma 24,212 (2007), pp. 1–
106.

[63] N. Carney et al. Guidelines for the Management of Severe Traumatic
Brain Injury, Fourth Edition. Neurosurgery 80,1 (2017), pp. 6–15.

[64] A. I. R. Maas, A. Marmarou, G. D. Murray, S. G. M. Teasdale, and E. W.
Steyerberg. Prognosis and clinical trial design in traumatic brain injury:
the IMPACT study. J. Neurotrauma 24,2 (2007), pp. 232–238.

[65] N. Stocchetti and A. I. Maas. Traumatic intracranial hypertension. N.
Engl. J. Med. 370,22 (May 2014), pp. 2121–2130.

[66] C. Hawthorne and I. Piper. Monitoring of intracranial pressure in
patients with traumatic brain injury. Front. Neurol. 5,July (Jan. 2014),
p. 121.

[67] L. F. Marshall, R. W. Smith, and H. M. Shapiro. The outcome
with aggressive treatment in severe head injuries. Part II: acute and
chronic barbiturate administration in the management of head injury.
J. Neurosurg. 50,1 (Jan. 1979), pp. 26–30.

[68] T. G. Saul and T. B. Ducker. Effect of intracranial pressure monitoring
and aggressive treatment on mortality in severe head injury. J. Neurosurg.
56,4 (Apr. 1982), pp. 498–503.

[69] R. K. Narayan et al. Intracranial pressure: to monitor or not to monitor?
A review of our experience with severe head injury. J. Neurosurg. 56,5
(May 1982), pp. 650–659.



40 bibliography

[70] P. Le Roux. Intracranial pressure after the BEST TRIP trial: a call for
more monitoring. Curr. Opin. Crit. Care 20,2 (Apr. 2014), pp. 141–7.

[71] P. J. Andrews et al. Hypothermia for Intracranial Hypertension after
Traumatic Brain Injury. N. Engl. J. Med. 373,25 (2015), pp. 2403–2412.

[72] D. Cooper and J. Rosenfeld. Decompressive craniectomy in diffuse
traumatic brain injury. N. Engl. J. Med. 364, (2011), pp. 1493–1502.

[73] P. Le Roux et al. Consensus summary statement of the International
Multidisciplinary Consensus Conference on Multimodality Monitoring
in Neurocritical Care. Intensive Care Med. 40,9 (2014), pp. 1189–1209.

[74] C. Lazaridis, C. G. Rusin, and C. S. Robertson. Secondary brain injury:
Predicting and preventing insults. Neuropharmacology (June 2018), pp. 1–
8.

[75] A. Vik et al. Relationship of ”dose” of intracranial hypertension to
outcome in severe traumatic brain injury. J. Neurosurg. 109,4 (Oct. 2008),
pp. 678–84.

[76] I. R. Chambers et al. Critical thresholds of intracranial pressure and
cerebral perfusion pressure related to age in paediatric head injury. J.
Neurol. Neurosurg. Psychiatry 77,2 (Feb. 2006), pp. 234–40.

[77] S. Kahraman et al. Automated measurement of pressure times time dose
of intracranial hypertension best predicts outcome after severe traumatic
brain injury. J Trauma 69,1 (2010), pp. 110–118.
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2
O B J E C T I V E S

2.1 general aim

The general aim of this thesis is to investigate the application of big data
analytics to develop decision support applications for critically illness, that are
validated, and can be used in clinical practice. The analytics will be applied in
fields where alternative methods have failed to demonstrate benefit to improve
patient care, or for which there is a need for knowledge discovery. When
alternative methods exist, we hypothesized that data-driven analytics could
solve the existing need better than these alternative methods. The developed
analytics should achieve sufficient performance and robustness to be translated
to the patient bedside where they can potentially show clinical usefulness.

2.2 specific objectives

More specifically, this project has focused on 3 highly prevalent conditions
in the intensive care unit, with important clinical consequences. A specific
objective is related to each condition.

objective 1 The first objective is to develop machine-learning-based
prediction models for the development of acute kidney injury during the
first week of intensive care unit stay, and to compare their performance
with existing acute kidney injury biomarkers. In addition, we will investigate
whether these models can be made available through an open-access web-
application. Finally, we will design and conduct an observational prospective
blinded study to compare the performance of the developed models with
clinicians and assess their potential clinical benefit.

objective 2 The second objective is to investigate the added and
independent clinical usefulness of near-infrared-based cerebral oximetry for
the post-operative care of children after cardiac surgery. Using data from a
prospective observational blinded study, we will investigate which properties
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of the cerebral oximeter signal are predictive, first for intensive care unit and
hospital outcomes, and second for acute kidney injury, a prevalent clinical
condition in these children, with important prognostic implications.

objective 3 The third objective is to investigate whether episodes of
deficient cerebral autoregulation are associated with worse clinical outcomes,
and can be defined as a subtype of acute secondary brain injury, in
patients with severe traumatic brain injury. We will investigate the association
between 6-month neurological outcome and the dose of cerebral autoregulation
deficiency in a large database of patients with severe traumatic brain injury.
Second, we will develop a prototype of a bedside monitor that is able to
calculate and display an index of cerebral autoregulation and to visualize
patient-specific secondary brain injury in terms of intracranial pressure and
of cerebral autoregulation, in a continuous way. The prototype will be ready to
be tested in an interventional study.
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abstract

purpose : Early diagnosis of acute kidney injury (aki) remains a major
challenge. We developed and validated aki prediction models in adult intensive
care unit (icu) patients and made these models available via an online
prognostic calculator. We compared predictive performance against serum
neutrophil gelatinase-associated lipocalin (ngal) levels at icu admission.

methods : Analysis of the large multicenter epanic database. Model
development (n = 2123) and validation (n = 2367) were based on clinical
information available (1) before and (2) upon icu admission, (3) after 1 day
in icu and (4) including additional monitoring data from the first 24h. The
primary outcome was a comparison of the predictive performance between
models and ngal for the development of any aki (aki-123) and aki stages 2 or
3 (aki-23) during the first week of icu stay.

results : Validation cohort prevalence was 29% for aki-123 and 15%
for aki-23. The aki-123 model before icu admission included age,
baseline serum creatinine, diabetes and type of admission (medical/surgical,
emergency/planned) and had an area under the receiver operating
characteristic curve (auroc) of 0.75 (95% ci 0.75-0.75). The aki-23 model
additionally included height and weight (auroc 0.77 (95% ci 0.77-0.77)).
Performance consistently improved with progressive data availability to
aurocs of 0.82 (95% ci 0.82-0.82) for aki-123 and 0.84 (95% ci 0.83-0.84) for
aki-23 after 24 h. ngal was less discriminant with aurocs of 0.74 (95% ci 0.74-
0.74) for aki-123 and 0.79 (95% ci 0.79-0.79) for aki-23.

conclusions : aki can be predicted early with models that only use
routinely collected clinical information and outperform ngal measured at icu

admission. The aki-123 models are available at http://akipredictor.com/.

http://akipredictor.com/
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3.1 introduction

Acute kidney injury (aki), a rapid decline in renal excretory function, is highly
prevalent in critically ill patients and is associated with increased risk of
morbidity and mortality and with high financial costs [1–4]. aki early diagnosis
remains a major clinical challenge [5], because aki is defined and classified
by an increase in serum creatinine (sc) or a decline in urine output (uo),
both late non-specific markers of the underlying phenomenon. Imprecise early
identification of aki could partially explain why the search for strategies
or interventions to mitigate the course of aki has been unsuccessful [6–13].
Recognizing patients at risk, optimization of hemodynamics and prevention of
nephrotoxicity remain the mainstay in the prevention of aki, whereas treatment
is largely supportive [14, 15].

Biomarkers, most prominently neutrophil gelatinase-associated lipocalin
(ngal), have been studied for aki stratification and prediction [16, 17] in
mixed [18], cardiac [19] and septic populations of critically ill patients [20–22].
However, quantifying biomarkers remains expensive and their added clinical
value appears limited [7, 23, 24].

The increase of computerization in the intensive care unit (icu) has given
rise to large electronic databases, thus making them amenable for ‘big data‘
analytics. This term pertains to machine-learning algorithms to analyze large
datasets and develop models for prognostication or decision-support in critical
care [25, 26]. Such models could be a cost-effective alternative to biomarkers for
aki prognostication [5].

The aim of the present study was the development and validation of clinical
prediction models for the development of aki in the first week of icu stay in
a general icu population. Their performance was compared to ngal in the
general icu population and in subgroups of cardiac and septic patients. The
validated models are available as an online prognostic calculator.

3.2 methods

3.2.1 Study population: development and validation cohorts

This is a retrospective analysis of the Early versus Late Parenteral Nutrition
in Critically Ill Adults (epanic) multicenter randomized clinical trial [27]
database. This trial compared two nutritional strategies in a heterogeneous
population of 4640 adult patients included in seven icus between August
2007 and November 2010. Written informed consent was obtained from all
patients or their designated representatives. The protocol was approved by
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the institutional review board of the participating centers and by the Belgian
authorities (Supplementary methods 3.A.1.1). Withholding parenteral nutrition
in the first week of icu stay did not impact aki incidence or recovery, but
reduced the median duration of renal replacement therapy (rrt) by 3 days [2].

We a priori decided to divide the database into development and validation
cohorts, matched for baseline characteristics, nutritional strategies, aki risk
factors and outcome (Supplementary methods 3.A.1.1). Patients were excluded
from the analysis if they had a history of end-stage renal disease, their baseline
sc was ≥ 4 mg/dL or the sc measurements were unavailable to stage aki.

3.2.2 aki definition

aki was staged each icu stay day using the ‘Kidney Disease: Improving Global
Outcomes‘ serum creatinine criteria (kdigo-sc) [14]. The uo criterion was not
used as it was not prospectively collected and therefore not available hourly.
Baseline sc determination is described in the Supplementary methods 3.A.1.2.

aki prediction tasks performed:

• aki-123: Prediction of development of any aki stage during the first week
of icu stay.

• aki-23: Prediction of development of aki stages 2 or 3 during the first
week of icu stay.

3.2.3 Clinical prediction models

For each prediction task, four models were developed which are intended to
be used serially, based on the clinical information available at the bedside at
successive time points.

• A Baseline model using only demographic data and data known before icu

admission.

• An Admission model that adds to the above, data available upon icu

admission.

• A Day1 model that adds to the above, data available on the first day in icu.

• A Day1+ model that adds to the above, data from the first 24h of monitoring
and administered medication, as well as data on the use of radio-contrast
agents during the week prior to icu admission until the first icu day.
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Models were developed using a random forest machine-learning algorithm
[28]. Data were obtained from the epanic research database (Filemaker
Pro®; FileMaker Inc, FileMaker International). Data for the Day1+ model
were retrieved from the clinical patient data management system database
(MetaVision®; iMDSoft, Needham, ma, usa), and the radio-contrast data were
retrieved from the pharmacy data warehouse.

3.2.4 Variable selection

Candidate variables were selected based on literature review, expert
opinion and availability in the dataset. The final set of predictor variables
was determined incrementally for each increasingly complex model via
bootstrapped backwards elimination analysis [29] (Supplementary methods
3.A.1.3).

3.2.5 Model development and validation

Selection of predictor variables, and model development was performed in the
development cohort only; performance and stability were internally validated
via bootstrapping [29]. Model performance was subsequently evaluated in
the validation cohort [30]. Models were also evaluated separately in cardiac
and septic patients only and for prediction of other clinical outcomes
(Supplementary methods 3.A.1.4).

3.2.6 ngal quantification

Arterial blood samples were taken upon icu admission. Blood was centrifuged,
and the serum was snap-frozen and stored at -80 °C. In the validation
cohort, serum ngal levels were quantified with the Human Lipocalin-
2/ngal Quantikine enzyme-linked immunosorbent assay (elisa) Kit from
R&D Systems (Abingdon, uk) according to the manufacturer’s instructions.

3.2.7 ngal as a predictor

ngal was evaluated as a continuous variable and at classification cut-offs
of 150, 200 and 400 ng/mL. To compute calibration and decision curves,
ngal measurements were converted to probabilities via logistic recalibration
[31]. The predictive value of ngal when added to the Admission model was
assessed via logistic regression.
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3.2.8 Performance evaluation criteria

Discrimination was evaluated with the receiver operating characteristic (roc)
curve and quantified with the area under the receiver operating characteristic
curve (auroc) and the discrimination slope (ds). ds is the difference in average
predictions for those with and without the outcome. aurocs above 0.7 were
considered adequate [32]. The integrated discrimination index (idi) [33] was
used to compare discrimination between two models in the same patient
subset. Calibration was evaluated with calibration curves and quantified with
calibration slopes and calibration-in-the-large. Adequate calibration results in
calibration slopes close to 1, calibration-in-the-large close to 0, and calibration
curves close to the diagonal. Decision curves are plots of net benefit at each
possible classification threshold and were used to assess clinical usefulness
[34]. Unless stated otherwise, to further evaluate model robustness, sensitivity,
specificity, positive predictive value (ppv), and net benefit were evaluated at
the classification thresholds that maximized sensitivity and specificity in the
development cohort. These are, however, not intended as optimal, as any
threshold within the model’s range of clinical usefulness can be used. The
choice of classification threshold is center-, patient- and task-specific and
should reflect the intended use of the prediction models.

A brief and comprehensive description of all the criteria can be found in [35]
(Supplementary methods 3.A.1.5).

Student’s t tests were used for normally distributed and Mann-Whitney U
tests for non-normally distributed continuous variables, and Fisher’s exact tests
for Boolean variables. To compare performance criteria of models in the same
patient subset, the difference and corresponding bootstrap confidence interval
(ci)s were computed. If the 95% ci excluded 0, the difference was declared
statistically significant at the 0.05 level. Analyses were performed using Python
2.7.8, Scipy 0.15, scikit-learn library [36] and MATLAB 2015a (The MathWorks,
Natick, ma, usa).

3.3 results

3.3.1 Study population: development and validation cohorts

A total of 4490 patients were included (Figure 3.1). The development cohort
(n = 2123) did not differ from the validation cohort (n = 2367) regarding
demographic and medical characteristics, risk factors for aki or clinical
outcomes (Table 3.A.1), except for younger median age (65.9 vs. 66.9, p = 0.02)
and proportionally more transplant surgery patients (7.5 vs. 5.9%, p = 0.03).
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Within the first week of icu stay, 27.7 and 29.2% patients developed aki-123

in the development and validation cohorts respectively, while 14.0 and 14.8%
developed aki-23.

Baseline sc was calculated in 22.8 and 22.9% patients, respectively, in each
cohort. In the validation cohort, there were 1591 (65.0%) cardiac and 455 (18.6%)
septic patients, and ngal was measured upon icu admission in 2081 patients.

Figure 3.1 Consort diagrams. (A) Development cohort. (B) Validation cohort.

3.3.2 Variable selection and model development

Candidate predictors and univariable association with aki-123 and aki-23 are
listed in Tables 3.A.2 and 3.A.4 (Supplementary results). Selected aki-123

predictors are shown in Table 3.1 and for aki-23 in Table 3.2. All models
are random forests comprising 60 trees with a maximum depth of 15 and 10

patients minimum per leaf.

3.3.3 Development cohort model performance

All models performed well according to all evaluation criteria (Supplementary
results, Figure 3.A.1; Table 3.A.5). Performance consistently improved with
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Table 3.1 Selected predictors for the four aki-123 clinical prediction models

Baseline Age

Baseline serum creatinine

Surgical or medical category
(Transplant surgery/ cardiovascular surgery (non-transplant)/
abdominal or pelvic surgery/ thorax surgery (non-cardiac)/
others (medical, trauma, other surgery)

Planned admission (yes/no)

Diabetes (yes/no)

Admission Blood glucose upon icu admission

Suspected sepsis upon icu admission (yes/no)

Hemodynamic support upon icu admission
(none/mechanical/pharmacological/both)

Day 1 Serum creatinine

apache II score

Maximum lactate

Bilirubin

Hours of icu stay

Day1+ Total amount of urine

Urine slopea

Time the mean arterial blood pressure is above its average value

Time the mean arterial blood pressure is below 60 mmHg

Pharmacologic hemodynamic support
(cumulative dose of inotropes and vasopressors)

Each model also includes all predictors of the rows above it
a The urine slope refers to the slope of a linear model fitted to the hourly urine flow

increasing data availability. The aki-123 and aki-23 Baseline models resulted in
respective aurocs of 0.77 and 0.81, increasing to 0.80 and 0.83 for Admission,
and 0.86 and 0.88 for Day 1. Adding monitoring and medication data improved
auroc to 0.87 for the aki-123 Day1+ model. Low prevalence precluded the
development of an aki-23 Day1+ model [37].

3.3.4 Validation cohort model performance

Table 3.3 and Figures 3.2a-c report the performance for aki-123. They
show good discrimination with aurocs of 0.75, 0.77, 0.80 and 0.82 and
dss of 0.19, 0.20, 0.23 and 0.21 for Baseline, Admission, Day1 and Day1+,
respectively. They are well calibrated with respective calibration slopes of



3.3 results 53

Table 3.2 Selected predictors for the three aki-23 clinical prediction models

Baseline Age

Baseline serum creatinine

Surgical or medical category
(Transplant surgery/ cardiovascular surgery (non-transplant)/
abdominal or pelvic surgery/ thorax surgery (non-cardiac)/
others (medical, trauma, other surgery)

Planned admission (yes/no)

Diabetes (yes/no)

Gender

Height

Weight

Admission Blood glucose upon icu admission

Suspected sepsis upon icu admission (yes/no)

Hemodynamic support upon icu admission
(none/mechanical/pharmacological/both)

Day 1 Serum creatinine

apache II score

Each model also includes all predictors of the rows above it

0.80, 0.85, 0.78 and 0.96, calibration-in-the-large close to 0, and calibration
curves close to the diagonal. Decision curves show clinical usefulness for
a wide range of risk thresholds, respectively 8.5-61.1, 2.5-65.7, 4.2-72.4 and
3.3-77.2%. The classification thresholds identified in the development cohort
of 25.80, 20.71, 14.46 and 15.81% remained robust and resulted in similar
sensitivities, specificities, ppv, net benefit and false positive reduction in the
validation cohort. To improve sensitivity or specificity, other classification
thresholds within the range of clinical usefulness can be chosen. Development
and validation cohorts show similar performance for aki-23 (Figure 3.A.2;
Table 3.A.6). Further illustrating discrimination are the Admission models’
predictions stratified by aki stages (Supplementary results, Figures 3.3a and
3.A.3).

Model performance did not decrease when evaluated in the subset of cardiac
patients, but aki-23 prevalence was insufficient for the Day1 evaluation (Figure
3.A.4; Tables 3.A.7 and 3.A.8). Performance in septic patients could only be
evaluated for aki-123 where it decreased to aurocs of 0.65, 0.76 and 0.77 and
ranges of clinical usefulness decreased to 32.0-64.0, 6.8-61.9 and 12.5-73.5% for
the Admission, Day1 and Day1+ models (Supplementary results, Figure 3.A.5;
Table 3.A.9).
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Table 3.3 Performance for aki-123 prediction in the validation cohort
aki-123 Validation cohorta Validation ngal cohortb

Baseline
model

Admission
model

Day1
model

Day1+
model

ngal Admission
model

Combined
model

Number
of
patients

2367 2274 1954 1752 2081 2081 2081

aki-123
preva-
lence
(%)

29.24 26.61 14.84 14.84 27.15 27.15 27.15

auroc 0.75
(0.75-
0.75)

0.77
(0.77-
0.77)

0.80
(0.80-
0.80)

0.82
(0.82-
082)

0.74
(0.74-
0.74)

0.77
(0.77-
0.77)

0.80
(0.80-
0.80)

Discrimi-
nation
slope

0.19
(0.19-
0.19)

0.20
(0.20-
0.20)

0.23
(0.23-
0.23)

0.21
(0.21-
0.21)

0.13
(0.13-
0.13)

0.20
(0.20-
0.20)

0.22
(0.22-
0.22)

Calibra-
tion
slope

0.80
(0.80-
0.80)

0.85
(0.85-
0.85)

0.78
(0.78-
0.79)

0.96
(0.96-
0.96)

0.83
(0.82-
0.83)

0.84
(0.84-
0.84)

0.87
(0.87-
0.87)

Calibra-
tion in
the large

-0.01
(-0.01 to
-0.01)

-0.01
(-0.02 to
-0.01)

-0.01
(-0.01 to
-0.01)

-0.03
(-0.03 to
-0.03)

0.00
(0.00 to
0.00)

-0.02
(-0.02 to
-0.02)

0.00
(0.00-
0.00)

Classifica-
tion
thresh-
old

25.80% 20.71% 14.46% 15.81% 150
ng/mL

200
ng/mL

400
ng/mL

20.71% 20.98%

Sensitivity 0.70
(0.70-
0.70)

0.72
(0.72-
0.72)

0.64
(0.64-
0.64)

0.60
(0.60-
0.61)

0.87
(0.86-
0.87)

0.69
(0.69-
0.69)

0.31
(0.31-
0.31)

0.73
(0.73-
0.73)

0.75
(0.75-
0.75)

Specificity 0.69
(0.69-
0.69)

0.68
(0.68-
0.69)

0.82
(0.82-
0.82)

0.88
(0.88-
0.88)

0.42
(0.42-
0.42)

0.65
(0.65-
0.65)

0.93
(0.93-
0.93)

0.68
(0.68-
0.68)

0.71
(0.71-
0.71)

Positive
predic-
tive
value

0.48
(0.48-
0.48)

0.45
(0.45-
0.45)

0.38
(0.38-
0.38)

0.46
(0.46-
0.46)

0.36
(0.36-
0.37)

0.42
(0.42-
0.42)

0.62
(0.62-
0.62)

0.46
(0.46-
0.46)

0.49
(0.49-
0.49)

∆ Net
benefitNone
(wrt
treat-
none)

0.13
(0.13-
0.13)

0.13
(0.13-
0.14)

0.07
(0.07-
0.07)

0.07
(0.07-
0.07)

0.13
(0.13-
0.13)

0.12
(0.12-
0.12)

0.05
(0.05-
0.05)

0.14
(0.14-
0.14)

0.15
(0.15-
0.15)

∆ Net
benefitAll
(wrt
treat-all)

0.08
(0.08-
0.08)

0.05
(0.05-
0.06)

0.05
(0.05-
0.05)

0.08
(0.08-
0.08)

0.03
(0.03-
0.03)

0.05
(0.05-
0.05)

0.20
(0.20-
0.20)

0.05
(0.05-
0.05)

0.06
(0.06-
0.06)

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown in parentheses. Values in the
last five rows were computed at the respective classification thresholds for each column. Values highlighted in bold are
significantly different from the value in the previous column at a statistical level of 0.05
a Clinical prediction models
b ngal, admission model and combined model; combined model is ngal plus the admission model
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Figure 3.2 Performance for aki-123 prediction in the validation cohort. a, d roc

curves, b, e calibration curves and c, f decision curves. Top row clinical
prediction models. Bottom row admission model, ngal and combined
model; combined model is the admission model plus ngal. Classification
thresholds are overlaid as dots on the roc and decision curves
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3.3.5 Validation cohort ngal performance

Table 3.3 and Figures 3.2d-f report the performance of admission ngal, the
Admission model and their combination in the subset of patients with an ngal

measurement. Respective aurocs are 0.74, 0.77 and 0.80 and dss are 0.13, 0.20,
and 0.22. The statistically significant discrimination improvements correspond
to a 0.073 idi between the Admission model and ngal and a smaller 0.016 idi

between the combined and the Admission models. The respective calibration-
slopes of 0.83, 0.84 and 0.87 are significantly different and all calibrations-in-the-
large are close to 0. Decision curves show clinical usefulness in the ranges of
14.3-72.4, 2.9-65.4 and 8.3-81.4%, respectively, with a noteworthy improvement
in net benefit of the combined over the Admission model only for high risk
thresholds above twice the population prevalence. A 212.54 ng/mL ngal cut-
off maximized sensitivity and specificity. Similar performance was observed for
aki-23 (Supplementary results, Table 3.A.10; Figure 3.A.6). ngal measurements
stratified by aki stages and classification cut-offs of 150, 200 and 400 ng/mL are
shown in Figure 3.3b.

Performance remained largely unchanged in the subset of cardiac patients
(Figure 3.A.7; Table 3.A.11), but decreased in the subset of septic patients
(Figure 3.A.8; Table 3.A.13) to aurocs of 0.71, 0.65 and 0.74 and to narrower
ranges of clinical usefulness of 35.7-78.2, 31.8-64.3 and 16.2-93.4%. At day 1 (n
= 1779, aki-123 prevalence = 15.06%), the Day1 model performed significantly
better than admission ngal, with respective aurocs of 0.81 and 0.67 and dss of
0.24 and 0.03, equivalent to a 0.21 idi. Likewise, decision curves show a broader
clinical usefulness range of 3.1-72.5 versus 10.3-35.3% (Supplementary results,
Figure 3.A.9; Table 3.A.14a). A similar performance was observed for aki-23

(Supplementary results, Figure 3.A.9; Table 3.A.14b).

3.3.6 Validation cohort: other clinical outcomes

All models performed well at predicting relevant related outcomes with aurocs
between 0.72 and 0.84 for the requirement of rrt and between 0.74 and 0.80 for
mortality at hospital discharge and the combined outcome. ngal performed
similar to the Admission model for the requirement of rrt but had aurocs
below 0.7 for mortality and the combined outcome (Supplementary results,
Table 3.A.16).
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Figure 3.3 Predictions of the aki-123 Admission model and admission ngal

measurements in the validation cohort stratified by Kidney Disease:
Improving Global Outcome (kdigo) aki stages. a) Admission model (n =
2274). b) ngal (n = 2081). Horizontal lines show the classification threshold
of 20.71% for the admission model and of 150, 200 and 400 ng/mL for
ngal. Reported P-values are for Mann-Whitney U tests

3.3.7 Online aki-123 prognostic calculator

The Baseline, Admission and Day1 models for aki-123 are available at: http:

//akipredictor.com/. On this website, the user can enter patient characteristics
and obtain a probability of developing aki. The user can specify a classification
threshold and see how this cut-off affects the model performance (including
sensitivity, specificity, ppv, negative predictive value (npv), ∆ net benefit
(nb)None, ∆ nbAll).

http://akipredictor.com/
http://akipredictor.com/
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3.4 discussion

In this study, we evaluated the use of clinical prediction models and ngal for
aki prognostication. Prediction of any aki stage (aki-123) is relevant for clinical
practice and research, as it allows for risk stratification. Additionally, in clinical
trials, it might aid in stratification or heterogeneity reduction. To emphasize
the relevance of aki-123, we only include these more sensitive models in the
online calculator, although a recent consensus meeting [5] highlighted aki-23

given its stronger association with outcome [4, 38]. In clinical practice, care
should be aimed at the prevention of aki in all patients, regardless of their risk.
Nevertheless, higher-risk patients require special attention and might benefit
from a more focused preventive management.

Our results clearly demonstrate that the development of aki-123 and aki-23

during the first week of icu stay, as defined by the kdigo-sc criteria, can be
accurately predicted based only on clinical information routinely collected up
to 24 hours after icu admission. Already at baseline and with few predictor
variables, the developed models performed well according to all evaluation
criteria, and consistently improved with increasing data availability. The best
performances were obtained when using all available data sources, including
continuous monitoring.

In the subset of patients with biomarker measurements, the Admission
model’s predictions and admission ngal concentrations related well to injury
severity, thus highlighting their potential use for risk stratification. The aurocs
of ngal are in accordance with previous large studies in general icu patients
[18, 39, 40]. The Admission model significantly outperformed the biomarker in
all criteria regarding aki-123 and performed equally for aki-23. Combining
ngal and clinical information significantly increased auroc, as reported
in previous studies [18, 40]. However, decision curves revealed that this
performance increase occurs only for the subset of patients at high risk of
developing aki, above twice the risk for the entire cohort. In these high-risk
patients, it is disputable whether the additional cost of measuring ngal with a
small gain in discrimination is clinically relevant, especially since no available
treatment exists [34, 35].

Overall, the same findings remained when evaluating the prediction models
in cardiac patients. Additionally, the models had equal or better performance
than risk scores designed specifically for cardiac patients when evaluated in
large studies [41–43]. In septic patients, ngal resulted in similar aurocs as
in previous studies [18, 42, 43], and likewise performed best at higher cutoffs.
Although ngal performed better than the Admission model, this was again
only the case for the high-risk patients.
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There is a general disillusionment in biomarkers for early aki diagnosis [44]
and their transferability to clinical practice [7]. Nevertheless, our decision curve
analyses show that ngal and possibly other fast-acting biomarkers [17, 23, 44,
45], could improve predictive performance (1) at or before icu admission, (2)
for the less prevalent and most severe aki stages, (3) for the patients at highest
risk, such as those with sepsis, (4) for early enrollment in interventions with
potentially adverse side effects [8], and (5) possibly when only a calculated
baseline creatinine is available (eResults). Furthermore, the online calculator
and other risk scores could identify the high-risk patients who would benefit
most from incurring the additional cost of a biomarker evaluation, which would
reduce unnecessary and expensive testing.

This study has several strengths. First and foremost is its use of a large
dataset of 4490 mixed critically ill patients from seven icus [27]. Second,
admission ngal was measured in 2081 patients, which to the best of our
knowledge constitutes the largest study of any aki biomarker and of ngal in
particular in a mixed critically ill population. Additionally, this also constituted
the largest ngal study in cardiac (n = 1405) or septic (n = 438) critically
ill patients. Furthermore, the ngal measurement timing was the same for
all patients, namely at icu admission. Third, aki was staged according
to the kdigo criteria. Fourth, care was taken to obtain the most accurate
values of baseline sc by searching back through hospital records. Fifth, a
development and validation approach was followed, with robust internal
validation techniques used for variable selection and model development.
Sixth, a comprehensive battery of evaluation criteria, including decision curve
analyses was used. Seventh, the models use a small number of predictors that
are likely available in most icus, which improves their likelihood of worldwide
use and generalizability. Lastly, and most importantly, the developed aki-123

models are publicly available as an online prognostic calculator. This is the first
of its kind and provides a benchmarking platform for future biomarker and
aki-prediction studies, and complements existing risk assessment scores [46]
in use at the bedside and/or in low resource settings [47].

This study has the following limitations. First, we only evaluated ngal while
other biomarkers might be more discriminant [17, 45]. Second, ngal was
only measured in the validation cohort, such that its reported decision- and
calibration-curve results are likely overestimations. Third, ngal was measured
only at icu admission; however, earlier studies demonstrated that serial
measurements do not improve predictive performance [18]. Fourth, as only the
kdigo-sc criteria were used, patients developing aki according to just kdigo-uo

criteria could be missed. Nevertheless, the models predicted well the related
and clinically relevant outcomes of rrt requirement and mortality at hospital
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discharge. Fifth, despite the database size, the low aki-23 prevalence precluded
its complete study, and therefore these models were excluded from the online
calculator. Sixth, models were developed for mixed critically ill patients and
then evaluated in cardiac and septic settings; therefore, it is plausible that better-
performing models could be developed specifically for each subpopulation.
Seventh, since the models were developed and validated in the epanic database,
which includes a high proportion of cardiac surgery patients, their performance
might vary when evaluated in other datasets, particularly if they differ in
patient characteristics and aki prevalence. Therefore, the findings of this study
require further external (and prospective) validation. Lastly, as with any tool,
there is an inherent risk for potential misuse of the online calculator. Care
should be taken to ensure the choice of a classification threshold that is suited
for the intended use of the prediction models.

3.5 conclusion

We have shown that aki development within the first week of icu stay, as
defined by the kdigo-sc criteria, can be predicted well with clinical prediction
models that only use routinely collected clinical data. We have also shown
that ngal measured at admission, when used as a single predictor or in
combination with clinical data, does not improve on the developed models.
These findings require prospective validation. Future biomarker studies on
aki prediction must show improvement over what is possible with readily
available clinical data or risk scores, not only regarding discrimination but
also with decision curve analysis. To facilitate further (prospective) validation,
the developed clinical prediction models are available online as a prognostic
calculator.
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3.a appendix

3.a.1 Supplementary methods

3.a.1.1 Study population: Development and Validation cohorts

This study is a secondary analysis of the database of the EPaNIC multicenter
randomized clinical trial [27] which compared two nutritional strategies in a
heterogeneous population of 4640 adult icu patients included between August
2007 and November 2010. Withholding parenteral nutrition in the first week
of icu stay did not have an impact on aki incidence or recovery, but it did
reduce the median duration of rrt by 3 days [2]. Written informed consent was
obtained from all patients or their designated representatives. The protocol was
approved by the institutional review board of the participating centers and by
the Belgian authorities.

The Informed consent and protocol, including exploratory metabolic studies
and analyses allowing to quantify presence of aki were approved by the
”Institutional Review Board” decision ML4190 (Commissie Medische Ethiek
Universitaire Ziekenhuizen KULeuven 10 mei 2007).

Initially, we only considered the subset of patients with complete electronic
records including monitoring data. We a priori decided to divide this subset
into development and validation cohorts matched for the following baseline
characteristics, nutritional strategies, aki risk factors and outcome:

• Age

• Gender

• apache-II

• Cardiac surgery

• Sepsis

• aki stage

• aki 3

• Renal replacement therapy

• icu length of stay

• Hospital length of stay

• Hospital mortality
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• Day-90 mortality

• Nutritional strategy (Randomization)

To perform the matching, the entire dataset was randomly permuted and
split into two sets of equal size and the aforementioned characteristics were
compared. This procedure was repeated until two sets were obtained such
that no statistical difference at the 0.05 level was observed between any of the
characteristics. One set was thereafter referred to as the development cohort
and the other as the validation cohort.

However, as the majority of the data required for modeling was also available
for the patients without monitoring information, it was later decided to include
these extra patients in the validation cohort for the models not requiring this
information. ngal was measured in all matched patients from the validation
cohort. The inclusion of additional patients to the validation cohort happened
after the ngal measurements were already performed.

Patients were excluded from this study if they had a history of end-stage
renal disease, if their baseline sc was ≥ 4 mg/dL or if the measurement of sc

was inadequate to stage aki (sc missing on day 1 or missing for more than 48

hours).

3.a.1.2 AKI definition

Baseline sc was determined for all patients as the lowest sc during the 3 months
prior to icu admission for elective admissions and the lowest sc from 3 months
to 1 week before icu admission for emergency admissions [48]. sc was searched
for in the hospital database or manually retrieved by searching documents from
referring hospitals/physicians. In case no baseline sc value was available, a
normal glomerular filtration rate (gfr) of 75 mL/min per 1.73 m2 was assumed,
and the Modification of Diet in Renal Disease (mdrd) formula was used to
estimate baseline sc [49].

The number (%) of patients with a true baseline creatinine in the
development and validation cohorts were respectively, 1640 (77.2%) and 1825

(77.1%) (p-value= 0.91). Additionally, no patient with a calculated baseline
creatinine was suspected to have chronic kidney disease (ckd).

aki was staged for each day of icu stay [48], using the kdigo sc criteria [14].

3.a.1.3 Variable selection

First, we performed a review of the literature to select all variables that were
associated with aki and that were available in the EPaNIC database. The
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identified variables were sorted in 4 categories depending on when they were
measured: before icu admission (Baseline), upon icu admission (Admission),
first morning of icu stay (Day1) and first 24 hours of icu stay (Day1+).

In the development cohort, we used a backwards feature selection technique,
based on a correlation-based ranking algorithm (CfsSubsetEval) of the Weka
machine-learning suite [50]. This algorithm determined via cross-validation
the lowest-ranked attribute from the attributes available at baseline. One
model was built with all the attributes available at baseline and another
without the lowest-ranked attribute. The discrimination performance of the two
models was compared with a bootstrapped approach [29]. If the difference in
discrimination was not statistically significant, we removed the next lowest-
ranked feature. This procedure was iterated until removal of the lowest-ranked
feature resulted in a significant drop in performance. As such, we obtained the
most discriminant model based on a small set of baseline attributes.

The process was then repeated in the development cohort for 1) the
Admission model to identify the most discriminant attributes to be added
to the already selected attributes for the simpler Baseline model; 2) the Day1

model to identify the most discriminant attributes to be added to the already
selected attributes for the simpler Admission model; and 3) the Day1+ model
to identify the most discriminant attributes to be added to the already selected
attributes for the simpler Day1 model. With this incremental approach, as the
complexity of the model increases and more data becomes available, no already
selected attribute is removed but only new ones added so long as they provide
an increase in performance.

3.a.1.4 Model development and validation

Selection of variables to be used as predictors, as well as model development
was performed in the development cohort only. Model performance and
stability were internally validated via bootstrapping [29] in the development
cohort.

Models were developed using a random forest machine learning algorithm.
Using a grid search approach, the following parameters of the random forest
were optimized: numbers of trees in the forest, maximum depth of the decision
tree, minimum number of samples to make a split, and minimum number of
samples to be a leaf. Additionally, at each node of the decision trees, the square
root of the number of available features for modeling was considered to make
the split.

The performance of the different models was subsequently externally
evaluated in the validation cohort. Models were also evaluated separately in
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cardiac and septic patients only, but only subsets with at least 50 patients with
and without the outcome were considered for validation [30, 51]. This meant
that aki-23 could not be studied in septic or cardiac patients with the Day1 or
Day1+ models, or in general icu patients with the Day1+ model. Models were
further evaluated for prediction of other relevant clinical outcomes, namely
requirement of rrt, mortality at hospital discharge and the combined outcome.

3.a.1.5 Performance evaluation criteria

To assess the performance of the developed models, we reported discrimination,
calibration and clinical usefulness.

Discrimination refers to how well the predictions allow to discriminate
between the patients with and without the outcome, i.e. in our study those
who will develop aki during the first week of icu stay from those who will
not. Discrimination was evaluated visually with the roc curve, and quantified
with the auroc and the ds. The roc curve plots the sensitivity versus 1-
specificity for all possible classification thresholds. The classification threshold
is the cut-off value above which the score is positive. In our study, a positive
score corresponds to considering the patient to be at risk for developing aki.
The ds measures how well the patients with and without the outcome are
separated. In our study, it is the difference between the average predictions of
the patients with aki and those without. ds ranges from 0 (no discrimination)
to 1 (complete discrimination). Finally, the idi [52] can be used to compare
discrimination between two models in the same patient subset. The idi is the
difference between the models’ discrimination slopes and is preferred to the
continuous net reclassification index (nri) when, as is the case for aki, no clear
classification cut-off exists [33].

A well discriminating model would maximize its sensitivity and specificity
and would therefore have an auroc close to 1. In practice, aurocs above 0.7
are considered adequate [32]. A well discriminating model therefore has higher
predicted probabilities for patients with aki and lower probabilities for patients
without aki, which translates to a large ds. Alternatively, a trivial model that
consists in randomly guessing the outcome is represented with a curve close
to the diagonal on the roc curve and an auroc close to 0.5. This trivial model
would have similar predictions for patients with and without aki, resulting in
a ds close to 0.

We also reported additional common measures of discrimination including
sensitivity, specificity, positive predictive value and negative predictive value.
These measures require choosing a threshold to classify patients as having
a low or high risk of developing aki. Commonly used thresholds are: 1)
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the percentage of patients in a population with similar characteristics who
developed aki or 2) the cutoff that results in the highest sensitivity and
specificity in a population with similar characteristics. We have chosen the
latter (as determined for all patients in the development cohort) in the reported
tables and as the default in the online calculator. This cutoff is equivalent to the
point in the roc curve closest to the upper left corner. Different classification
thresholds are likely required to study populations at different risks for aki.
For instance, a higher cutoff would be considered when studying septic patients
than for cardiac ones. The sensitivity shows the ability of the model to correctly
identify the patients with aki. The specificity shows the ability of the model to
correctly identify the patients without aki. The positive predictive value reflects
how likely it is that a patient has aki given that the predicted probability is
higher than the classification threshold. Finally, the negative predictive value
reflects how likely it is that a patient does not have aki given that the predicted
probability is lower than the classification threshold.

Calibration refers to the agreement between the population outcomes and
the model predictions. For example, if the observed frequency of aki is 30

out of 100 patients in the population, a well calibrated model should predict
a 30% risk of developing aki for these 100 patients. Calibration can be
evaluated visually with calibration curves which plot the observed proportion
in the population versus the model predicted probabilities. Calibration can
additionally be quantified by the intercept (calibration-in-the-large) and the
slope (calibration-slope) of a linear regression fitted to this curve.

A well calibrated model shows strong agreement between the population
observed proportions and the probabilities given by the model. Therefore, it
has a calibration curve close to the diagonal, a calibration-slope close to 1, and
a calibration-in-the-large close to 0.

The clinical usefulness of a prediction model refers to the potential clinical
benefit achieved by using this model. In particular, it is important to report the
clinical usefulness if the harm of misclassifying a patient without the outcome
is different than the one of misclassifying a patient with the outcome, or if the
benefit of classifying a patient with the outcome is different than the one of
classifying a patient without the outcome.

The clinical usefulness can be quantified using the nb. nb is the difference
between the expected benefit and the expected harm associated with the
classification. The expected benefit is the number of patients who have the
outcome and were classified as such (true positives) and who will therefore
benefit from the treatment or measures taken to improve their care. The
expected harm is the number of patients who will be wrongly treated because
they were classified as having the outcome (false positives) multiplied by a



3.A appendix 67

weighting factor depending on the classification threshold. The classification
threshold is chosen depending on the relative weight of harm and benefit
associated with the classification. For instance, if the treatment associated
with the classification of having the outcome can be considered harmful (e.g.
has undesirable side-effects, is very costly, etc.) it is important to have few
false positive classifications; this corresponds to using a high classification
threshold. Alternatively, if the treatment associated with the classification of
having the outcome is benign, the number of false positive classifications is less
important; this corresponds to using a low classification threshold. The weight
given to any potential harm or benefit associated with the actions resulting
from a classification is center, patient and task dependent, and therefore so
is the choice of classification threshold. In our study, early recognition of aki

will allow for earlier preventive measures. Because these preventive measures
will arguably pose little harm to the patient, risk thresholds below 0.5 are
recommended.

The clinical usefulness can be visualized using decision curves. These
decision curves plot the net benefit at each possible classification threshold
[53]. For a model to be clinically useful at a given threshold it must have a
positive net benefit, which is equivalent to improving upon trivially classifying
all patients as not having the outcome (referred to as treat-none strategy). The
difference between the model’s nb and the nb of classifying all patients as not
having the outcome (treat-none strategy) is denoted ∆ nbNone. Second, it must
have a higher net benefit than trivially classifying all patients as having the
outcome (referred to as treat-all strategy). The difference between the model nb

and the nb of classifying all patients as having the outcome (treat-all strategy)
is denoted ∆ nbAll.

Clinically useful models have larger net benefits than the two trivial
strategies for all relevant classification thresholds. The wider the range of
clinical usefulness, the more versatility the model offers, as it can be used with
a larger number of different classification thresholds. Decision curves therefore
allow for a straightforward visual comparison between the clinical usefulness
of different models designed for the same task.

The net benefit reported in the results tables was evaluated at the
classification thresholds that maximized sensitivity and specificity in the
development cohort, equivalent to the point in the roc curve closest to the
upper left corner. As an example, the ∆ nbNone of the Baseline model for aki-
123 in the validation cohort at this classification threshold was 13%. Therefore,
for every 100 patients classified by the Baseline model, 13 extra true positives
will be identified without increasing the false positive rate, as compared to
assuming no patient will develop aki (treat-none strategy). The ∆ nbAll was
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8%. Therefore, for every 100 patients classified by the Baseline model, 8 extra
true positives will be identified without increasing the false positive rate, as
compared to assuming all patients will develop aki (treat-all strategy).

A brief and comprehensive description of all the criteria can be found in [35].

3.a.2 Supplementary results

3.a.2.1 Performance of clinical prediction models for AKI-23

Table 3.A.6 and Figure 3.A.2 report the performance of the clinical prediction
models for aki-23 in the validation cohort. The low prevalence precluded
the development of the more complex Day1+ model for this task [37].
Discrimination results are aurocs of 0.77, 0.79 and 0.84 and dss of 0.15, 0.15,
and 0.12 for the Baseline, Admission and Day1 models, respectively. The
models have respective calibration-slopes of 0.63, 0.67 and 0.44; calibrations-
in-the-large close to 0; and calibration curves that deviate downward from the
diagonal. Decision curves show clinical usefulness in the ranges of 3.1-35.8%,
1.0-39.1% and 0.1-28.7%, respectively. Admission model predictions stratified
by aki stages and the classification threshold are shown in Figure 3.A.4b.
Baseline and Admission model performance, mainly calibration, decreased
when compared to the development cohort (Figure 3.A.1, Table 3.A.5b), but
remained unchanged when evaluated only in the subset of cardiac patients in
the validation cohort (Figure 3.A.5, Table 3.A.9b). The number of septic patients
in the validation cohort was insufficient for model evaluation.

3.a.2.2 Performance of ngal for aki-23 prediction

Table 3.A.8 and Figure 3.A.3 report the performance of admission ngal, the
Admission model and their combination for aki-23 prediction in the subset
of patients in the validation cohort with a biomarker measurement (n=2081,
prevalence=12.59%). Discrimination respectively results in aurocs of 0.79, 0.79

and 0.83 and dss of 0.15, 0.15, and 0.19; equivalent to a 0.002 idi between
ngal and the Admission model and a 0.042 idi between the combined and
the Admission models. Respective calibration-slopes are 0.70, 0.69 and 0.81 and
calibrations-in-the-large are close to 0. Decision curves show clinical usefulness
in the ranges of 5.2-72.4%, 2.2-39.8% and 4.0-86.4%, respectively. The ngal

classification threshold that maximized sensitivity and specificity in this cohort
was 232.40 ng/mL. Performance remained largely unchanged when evaluated
only in the subset of cardiac patients in the validation cohort (Figure 3.A.7,
Table 3.A.12), but with a reduction in the ranges of clinical usefulness to 5.0-
45.0%, 2.1-28.2% and 3.2-45.9%. The number of septic patients developing aki-
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23 was insufficient for model evaluation. At day 1 (n=1779, prevalence=4.5%)
admission ngal and the Day1 model respectively result in aurocs of 0.70 and
0.83 and dss of 0.02 and 0.12, equivalent to a 0.098 idi. Decision curves show
clinical usefulness in the ranges of 3.0-30.0% and 0.1-27.3%, respectively (Figure
3.A.9, Table 3.A.14b).

3.a.2.3 Performance of NGAL and clinical prediction models for AKI-123 prediction
with respect to true/calculated creatinine baseline

Table 3.A.15 and Figure 3.A.10 report the performance of admission ngal, the
Admission model and their combination for aki-123 prediction in the subset
of patients in the validation cohort with a biomarker measurement (n=2081,
prevalence=12.59%) separated into two subsets, one with true creatinine
baseline and the other with a calculated baseline creatinine. Of the 2081 patient
in the validation cohort with an ngal measurement, 458 had a calculated
baseline creatinine (141 developed aki) and 1623 had a true baseline creatinine
(424 developed aki). roc and decision curves are reported below for these
two patient subsets. When the baseline is calculated, ngal results in better
auroc than the Admission model, and the roc curves show the increase in
discriminability occurs for higher specificity. Likewise, the Decision curves
show that ngal improves performance over the Admission model for higher
risk patients (risk thresholds approximately between 40 and 80%). However as
only 141 patients developed aki in this cohort, the performance improvement
provided by ngal (or potentially other biomarkers) when baseline creatinine is
calculated should be validated in larger samples sizes.

When considering the much larger cohort of patients with true creatinine
baseline, the Admission model outperforms ngal.

3.a.2.4 Performance of the prediction models and of admission NGAL for outcome
prediction

We report the discriminative performance of the different models for predicting
other relevant outcomes, namely 1) Requirement of rrt, 2) Mortality or rrt at
hospital discharge and 3) Mortality at hospital discharge. We performed the
analysis for the 4 models for aki-123 and for the 3 first models for aki-23. We
also compared ngal and the Admission model in the subset of patients with a
biomarker measurement.

The results shown in Table3.A.16A for the aki-123 case and in Table 3.A.16B
for the aki-23 case, indicate that the models retain good discriminatory
performance for these tasks. It is noteworthy that unlike aki, requirement of
rrt is not necessarily captured by the change in serum creatinine. It is also
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noteworthy that for rrt, the performance consistently improves with data
availability (except for the Day1+ case).

All models performed well at predicting mortality related outcomes
with aurocs above 0.74. ngal performed similar to Admission model for
requirement of rrt but had aurocs below 0.7 for mortality related tasks.

3.a.3 Supplementary tables and figures

Table 3.A.1 Patient characteristics and clinical outcomes
Development cohort Validation cohort P-value

Number of patients 2123 2367 -

aki, n(%) 588 (27.7) 692 (29.2) .26

aki stage, n(%)

Stage 1 290 (13.7) 342 (14.4) .46

Stage 2 94 (4.4) 117 (4.9) .43

Stage 3 204 (9.6) 233 (9.8) .80

ckd, n(%) 373 (17.6) 392 (16.6) .38

Age, years, median (iqr) 65.9 (54.9-74.8) 66.9 (56.5-75.2) .02

Diabetes, n(%) 359 (16.9) 408 (17.2) .78

Baseline serum creatinine,
mg/dl, median (iqr)

0.91 (0.76-1.05) 0.92 (0.76-1.05) .37

True baseline serum creatinine,
n(%)

1640 (77.2) 1825 (77.1) 0.91

Elective admission, n(%) 1237 (58.3) 1422 (60.1) .22

Reason for icu admission, n(%)

Transplant surgery 159 (7.5) 139 (5.9) .03

Cardiovascular surgery 1425 (67.1) 1591 (67.2) .94

Abdominal /Thorax/
Pelvic surgery

277 (13.0) 356 (15.0) .06

Other 262 (12.3) 281 (11.9) .64

icu los, days, median (iqr) 3.0 (2.0-8.0) 4.0 (2.0-8.0) .26

Hospital los, days, median
(iqr)

15.0 (10.0-27.0) 14.0 (9.0-28.0) .17

Mortality at 90 days, n(%) 240 (11.5) 251 (10.8) .44

Dialysis, n(%) 155 (7.3) 181 (7.6) .69
AKI acute kidney injury, CKD chronic kidney disease, ICU intensive care unit, IQR interquartile range, LOS length of
stay.
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Table 3.A.2 Baseline model candidate predictor list and univariable association with
aki-123 and aki-23

A) Baseline
development
cohort

aki-123 no aki aki-
123

P-
value

aki-
23

P-
value

Age, years 65.9 (54.9-74.8) 68.8 (58.4-77.1) 64.5 (53.8-73.9) <.001 .05

Gender male, n(%) 1346 (63.4) 368 (62.6) 978 (63.7) .65 .79

Weight, kg 75.0 (65.0-85.0) 75.0 (65.0-85.0) 75.0 (65.0-85.0) .49 .14

Height, cm 170.0 (163.0-176.0) 170.0 (163.0-175.0) 170.0 (163.0-176.0) .13 .48

Baseline serum
creatinine, mg/dl

0.91 (0.76-1.05) 0.97 (0.75-1.13) 0.90 (0.77-1.03) .001 .47

Diabetes, n(%) 359 (16.9) 134 (22.8) 225 (14.7) <.001 .004

Malignancy, n(%) 282 (13.3) 105 (17.9) 177 (11.5) <.001 .01

Elective admission,
n(%)

1237 (58.3) 209 (35.5) 1028 (67.0) <.001 <.001

Reason for icu

admission, n(%)

Transplant
surgery

159 (7.5) 65 (11.1) 94 (6.1) <.001 .01

Cardiovascular
surgery

1425 (67.1) 331 (56.3) 1094 (71.3) <.001 <.001

Abdominal/
Thorax/
Pelvic surgery

277 (13.0) 116 (19.7) 161 (10.5) <.001 <.001

Other 262 (12.3) 76 (12.9) 186 (12.1) .54 .05

B) Admission
development
cohort

aki-123 no aki aki-
123

P-
value

aki-
23

P-
value

Age, years 65.9 (54.9-74.8) 69.7 (58.9-77.3) 64.8 (53.8-73.9) <.001 .03

Gender male, n(%) 1289 (63.4) 315 (62.6) 974 (63.6) .70 .82

Weight, kg 75.0 (65.0-85.0) 75.0 (65.0-84.0) 75.0 (65.0-85.0) .32 .38

Height, cm 170.0 (163.0-176.0) 170.0 (162.0-175.0) 170.0 (163.0-176.0) .04 .29

Baseline serum
creatinine, mg/dl

0.92 (0.76-1.05) 0.97 (0.75-1.16) 0.90 (0.77-1.03) <.001 .27

Diabetes, n(%) 335 (16.5) 111 (22.1) 224 (14.7) <.001 .02

Malignancy, n(%) 266 (13.1) 91 (18.3) 175 (11.4) <.001 .01

Elective admission,
n(%)

1232 (60.6) 204 (40.6) 1028 (67.1) <.001 <.001

Reason for icu

admission, n(%)

Transplant
surgery

148 (7.3) 55 (10.9) 93 (6.1) <.001 .02

Cardiovascular
surgery

1384 (65.9) 291 (57.9) 1093 (71.4) <.001 <.001

Abdominal/
Thorax/
Pelvic surgery

261 (10.0) 100 (19.9) 161 (10.5) <.001 <.001

Other 241 (11.1) 57 (11.3) 184 (12.0) .75 .23
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Sepsis upon icu

admission, n(%)
408 (20.1) 185 (36.8) 223 (14.6) <.001 <.001

Blood glucose
upon icu

admission, mg/dl

135.0 (112.0-162.0) 141.0 (113.0-174.5) 134.0 (112.0-159.0) <.001 0.005

Hemodynamic
support on icu

admission, n(%)

Pharmacological 1687 (82.9) 450 (89.5) 1228 (80.2) <.001 <.001

Mechanical 51 (2.5) 33 (6.6) 18 (1.2) <.001 .005

C) Day1 development
cohort

aki-123 no aki aki-
123

P-
value

aki-
23

P-
value

Age, years 65.6 (54.6-74.5) 69.7 (58.8-78.0) 64.8 (53.8-73.9) <.001 .02

Gender male, n(%) 1123 (63.3) 150 (61.2) 973 (63.6) .47 .62

Weight, kg 75.0 (65.0-84.0) 75.0 (65.0-82.0) 75.0 (65.0-85.0) .26 .34

Height, cm 170.0 (163.0-176.0) 169.0 (162.0-175.0) 170.0 (163.0-176.0) .05 .05

Baseline serum
creatinine, mg/dl

0.92 (0.77-1.05) 1.03 (0.81-1.37) 0.90 (0.77-1.03) <.001 <.001

Diabetes, n(%) 273 (15.4) 49 (20.0) 224 (14.7) .03 .62

Malignancy, n(%) 205 (11.6) 30 (12.2) 175 (11.4) .74 .07

Elective admission,
n(%)

1154 (65.1) 126 (51.4) 1028 (67.2) <.001 .001

Reason for icu

admission, n(%)

Transplant
surgery

130 (7.3) 37 (15.1) 93 (6.1) <.001 <.001

Cardiovascular
surgery

1242 (70.0) 150 (61.2) 1092 (71.4) <.001 .12

Abdominal/
Thorax/
Pelvic surgery

197 (11.1) 36 (14.7) 161 (10.5) .06 .57

Other 205 (11.6) 22 (9.0) 183 (12.0) .19 .20

Sepsis upon icu

admission, n(%)
284 (16.0) 62 (25.3) 222 (14.5) <.001 .07

Blood glucose
upon icu

admission, mg/dl

135.0 (113.0-161.0) 143.0 (120.0-178.0) 134.0 (112.0-159.0) <.001 <.001

Hemodynamic
support on icu

admission, n(%)

Pharmacological 1459 (82.2) 225 (91.8) 1226 (80.1) <.001 <.001

Mechanical 34 (1.9) 16 (6.5) 18 (1.2) <.001 <.001

Serum creatinine
on day 1, mg/dl

0.87 (0.69-1.09) 1.13 (0.85-1.48) 0.85 (0.69-1.03) <.001 <.001

Apache II on day 1 18.0 (13.0-29.0) 26.0 (18.0-35.0) 17.0 (13.0-27.0) <.001 <.001

Maximum lactate
on day 1, mg/dl

1.8 (1.4-2.5) 2.3 (1.6-3.2) 1.8 (1.3-2.4) <.001 <.001

Bilirubin on day 1,
mg/dl

0.75 (0.51-1.14) 0.86 (0.51-1.55) 0.74 (0.51-1.09) 0.001 .01

Sofa on day 1 7.0 (6.0-9.0) 9.0 (7.0-10.0) 7.0 (6.0-8.0) <.001 <.001
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Blood glucose on
day 1, mg/dl

104.0 (90.0-120.0) 105.0 (89.0-132.0) 104.0 (91.0-119.0) .16 .37

Urea on day 1,
mg/dl

32.0 (25.0-41.0) 46.0 (32.0-62.3) 30.0 (23.8-39.0) <.001 <.001

Urine over 24h

Total amount, ml 1650.0
(1213.0-2210.3)

1200.0
(970.0-1666.5)

1710.0
(1311.0-2260.0)

<.001 n.a.

Slope1 -0.0003

(-0.0011-0.0004)
-0.0005

(-0.0011-0.0000)
-0.0003

(-0.0011-0.0005)
<.001 n.a.

Number of
measurements2 18.0 (15.0-20.0) 17.0 (15.0-19.5) 18.0 (15.0-20.0) .15 n.a.

Protein, g/L 0.29 (0.26-0.60) 0.28 (0.23-0.43) 0.60 (0.43-1.11) .21 n.a.

White blood cell,
cells/µL

0.026 (0.012-0.048) 0.026 (0.013-0.055) 0.026 (0.012-0.045) .23 n.a.

Red blood cell,
cells/µL

0.026 (0.010-0.121) 0.048 (0.016-0.378) 0.022(0.009-0.100) .04 n.a.

Heart frequency,
beat/min

Mean 81.9 (74.9-89.5) 84.0 (77.7-92.1) 81.4 (74.5-89.1) <.001 n.a.

Median 81.0 (74.1-90.0) 84.0 (79.0-92.4) 81.0 (74.0-89.0) <.001 n.a.

Standard
deviation

7.5 (5.4-10.5) 7.6 (5.1-10.8) 7.5 (5.5-10.4) .41 n.a.

Time3 above 120 0.0 (0.0-0.0) 0.0 (0.0-3.0) 0.0 (0.0-0.0) .06 n.a.

Time3 above 110 0.0 (0.0-24.0) 0.0 (0.0-55.0) 0.0 (0.0-21.0) <.001 n.a.

Time3 above 100 8.0 (0.0-176.75) 18.0 (0.0-330.0) 6.0 (0.0-165.0) .006 n.a.

Time3 below 60 0.0 (0.0-28.0) 0.0(0.0-19.0) 0.0(0.0-30.0) .48 n.a.

Time3 below 50 0.0 (0.0-0.0) 0.0(0.0-0.0) 0.0(0.0-0.0) .21 n.a.

Time3 below 40 0.0 (0.0-0.0) 0.0(0.0-0.0) 0.0(0.0-0.0) .39 n.a.

Time3 inside the
ci

2001.5
(1776.3-2077.0)

2019.0
(1774.0-2087.0)

1999.0
(1777.0-2076.0)

.15 n.a.

Time3 outside the
ci

608.0 (522.0-656.0) 601.0 (516.0-661.0) 609.0 (523.0-656.0) .30 n.a.

Time3 above the
mean

657.5 (566.0-764.0) 661.0 (573.0-781.0) 657.0 (564.0-762.0) .23 n.a.

Time3 below the
mean

712.5 (596.3-808.0) 717.0(616.0-843.0) 711.0(594.0-806.0) .06 n.a.

Time3 above the
median

643.0 (567.0-684.0) 649.0 (574.0-686.0) 642.0 (563.0-684.0) .21 n.a.

Time3 below the
median

644.0 (565.0-685.0) 649.0 (559.0-685.0) 643.0(565.0-685.0) .36 n.a.

Mean arterial blood
pressure, mmHg

Mean 73.8 (69.3-79.2) 72.0 (67.4-77.7) 74.0 (69.6-79.3) <.001 n.a.

Median 73.0 (68.0-78.0) 72.0 (66.0-77.0) 73.0 (68.0-79.0) <.001 n.a.

Standard
deviation

8.9 (7.3-10.9) 9.2 (7.4-11.2) 8.9 (7.3-10.8) .15 n.a.

Time3 above 120 0.0 (0.0-1.0) 0.0 (0.0-0.0) 0.0 (0.0-1.0) .30 n.a.

Time3 above 110 0.0 (0.0-7.0) 0.0 (0.0-7.0) 0.0(0.0-7.0) .01 n.a.

Time3 above 100 9.0 (0.03-41.0) 5.0 (0.0-36.0) 10.0 (0.0-42.0) .01 n.a.

Time3 below 60 52.0 (7.0-208.3) 114.0 (18.0-377.0) 47.0 (5.0-189.0) <.001 n.a.
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Time3 below 50 0.0 (0.0-4.0) 1.0 (0.0-16.0) 0.0 (0.0-3.0) <.001 n.a.

Time3 below 40 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) .02 n.a.

Time3 inside the
ci

2062.0
(1956.0-2100.8)

2073.0
(2006.0-2103.0)

2060.0
(1947.0-2100.0)

.001 n.a.

Time3 outside the
ci

647.0 (607.0-676.0) 648.0 (325.0-676.0) 647.0 (604.0-676.0) .03 n.a.

Time3 above the
mean

630.0 (565.3-692.0) 642.0 (589.0-701.0) 628.0 (561.0-691.0) .006 n.a.

Time3 below the
mean

751.0 (676.0-815.0) 764.0 (691.0-816.0) 748.0 (674.0-814.0) .09 n.a.

Time3 above the
median

670.0 (629.0-694.0) 672.0 (646.0-693.0) 669.0 (626.0-695.0) .04 n.a.

Time3 below the
median

670.0 (627.0-694.0) 675.0 (644.0-697.0) 668.0 (623.0-693.0) <.001 n.a.

Radio-contrasts

n (%) 116 (6.5) 16 (6.5) 100 (6.5) >.99 n.a.

Number of
radio-contrast
administrations

0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0(0.0-0.0) .49 n.a.

Maximum
osmolality

0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0(0.0-0.0) .49 n.a.

Maximum
viscosity

0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) .49 n.a.

N ionic
radio-contrast
(%)

4 (0.2) 1 (0.4) 3 (0.2) .44 n.a.

Medications

Inotropes and
vasopressors
dose, mg

6.4e-06

(3.7e-07-4.7e-05)
3.4e-05

(5.5e-06-2.2e-04)
5.1e-06

(1.8e-07-3.0e-05)
<.001 n.a.

Inotropes and
vasopressors, n
(%)

1405 (79.2) 213 (86.9) 1192 (78.0) <.001 n.a.

Vancomycin dose,
mg

0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) .02 n.a.

Vancomycin, n
(%)

48 (2.7) 16 (6.5) 32 (2.1) <.001 n.a.

Aminoglycoside,
n (%)

83 (4.7) 26 (10.6) 57 (3.7) <.001 n.a.

Antiviral, n (%) 91 (5.1) 26 (10.6) 65 (4.3) <.001 n.a.

Beta-lactam
antibiotics, n (%)

347 (19.6) 65 (26.5) 282 (18.4) .004 n.a.

Diuretics, n (%) 604 (34.0) 64 (26.1) 540 (35.3) .004 n.a.

Ciclosporin/
tacrolimus, n (%)

121 (6.8) 28 (11.4) 93 (6.1) .003 n.a.

Antifungals, n
(%)

20 (1.1) 6 (2.4) 14 (0.9) .04 n.a.

Anti-
inflammatory
drugs, n (%)

82 (4.6) 7 (2.9) 75 (4.9) .18 n.a.

Ace inhibitors, n
(%)

14 (0.7) 2 (0.8) 12 (0.8) >.99 n.a.
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Values are expressed as median (iqr) unless indicated otherwise. Antifungals are Diflucan,
VFend and AmBisome. Antivirals are Cymevene, Zovirax, Valcyte and Docaciclo. Anti-
inflammatory drugs are Taradyl, Ibuprofene and Voltaren.
AKI acute kidney injury, ICU intensive care unit, IQR interquartile range, n.a., not assessed.
1 The urine slope refers to the slope of a linear model fitted to the hourly urine values.
2 The number of measurements refers to the number of time the urine output was measured
at the patient’s bedside.
3 Time in minutes.

Table 3.A.4 Radio-contrast predictor information
Radio-contrast Ionicity (yes/no) Osmolality (mOsm/kg

water)
Viscosity (cp 37 °C)

DOTAREM yes 1350 2.4

IOMERON 250 no 435 7.5

IOMERON 300 no 521 4.5

IOMERON 350 no 618 7.5

IOMERON 400 no 726 12.6

LIPIODOL no 500 2.5

MULTIHANCE yes 1950 5.3

OMNIPAQUE 240 no 520 3.4

OMNIPAQUE 300 no 672 6.3

OPTIRAY 350 no 651 9

TELEBRIX 12 yes 640 1.1

TELEBRIX 35 yes 2130 7.5

ULTRAVIST 240 no 483 2.8

ULTRAVIST 370 no 774 10

UROGRAFINE 30 no 710 1.4

VISIPAQUE 270 no 290 6.3

VISIPAQUE 320 no 290 11.8

XENETIX 350 no 915 10
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Table 3.A.5 Performance for aki-123 and aki-23 prediction in the development cohort
A) aki-123 Baseline model Admission model Day1 model Day1+ model

Number of patients 2123 2034 1774 1774

aki prevalence 27.70 24.72 13.81 13.81

auroc 0.77 [0.77-0.77] 0.80 [0.80-0.80] 0.86 [0.86-0.86] 0.87 [0.86-0.87]

Sensitivity1 0.71 [0.71-0.72] 0.71 [0.71-0.72] 0.78 [0.78-0.78] 0.79 [0.78-0.79]

Specificity1 0.70 [0.70-0.71] 0.74 [0.74-0.74] 0.81 [0.80-0.81] 0.79 [0.80-0.80]

Calibration slope 0.83 [0.82-0.83] 0.92 [0.92-0.93] 0.87 [0.87-0.88] 0.96 [0.95-0.97]

Calibration in the
large

-0.00
[-0.00 to 0.00]

-0.00
[-0.00 to -0.00]

-0.00
[-0.01 to -0.00]

-0.01
[-0.01 to -0.00]

∆ Net benefitNone

(w.r.t. treat-none)1
0.13 [0.13-0.13] 0.12 [0.12-0.12] 0.08 [0.08-0.09] 0.09 [0.09-0.09]

∆ Net benefitAll
(w.r.t. treat-all)1

0.09 [0.09-0.09] 0.08 [0.08-0.08] 0.07 [0.07-0.07] 0.08 [0.07-0.08]

Classification
threshold (%)

25.80 20.71 14.46 15.81

B) aki-23 Baseline model Admission model Day1 model Day1+ model

Number of patients 2123 2034 1774 1774

aki prevalence (%) 14.04 11.31 4.28 4.28

auroc 0.81 [0.81-0.81] 0.83 [0.83-0.83] 0.88 [0.88-0.89] n.a.

Sensitivity1 0.79 [0.78-0.79] 0.77 [0.76-0.77] 0.81 [0.81-0.81] n.a.

Specificity1 0.71 [0.71-0.72] 0.75 [0.75-0.75] 0.82 [0.81-0.82] n.a.

Discrimination slope 0.20 [0.20-0.20] 0.19 [0.19-0.20] 0.19 [0.18-0.19] n.a.

Calibration slope 0.76 [0.76-0.77] 0.82 [0.81-0.83] 0.74 [0.73-0.77] n.a.

Calibration in the
large

-0.00
[-0.00 to -0.00]

-0.00
[-0.00 to -0.00]

-0.00
[-0.00 to -0.00]

n.a.

∆ Net benefitNone

(w.r.t. treat-none)1
0.08 [0.08-0.08] 0.06 [0.06-0.06] 0.03 [0.03-0.03] n.a.

∆ Net benefitAll
(w.r.t. treat-all)1

0.06 [0.06-0.06] 0.06 [0.06-0.06] 0.03 [0.03-0.03] n.a

Classification
threshold (%)

15.91 13.55 6.97 n.a

Median and 95% ci were obtained from 400 bootstrap replicas.
AKI acute kidney injury, AUROC area under the roc curve, n.a. not applicable, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort.
2 The small number of patients developing aki-23 precluded the development of the complex Day1+ model.
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Table 3.A.6 Performance for aki-23 prediction in the validation cohort
aki-23 Baseline model Admission model Day1 model Day1+ model

Number of patients 2367 2274 1954 n.a.

aki prevalence (%) 14.78 12.00 4.19 n.a.

auroc 0.77 [0.77-0.77] 0.79 [0.79-0.79] 0.84 [0.83-0.83] n.a.

Sensitivity1 0.64 [0.64-0.64] 0.65 [0.65-0.65] 0.56 [0.56-0.56] n.a.

Specificity1 0.76 [0.76-0.76] 0.78 [0.78-0.78] 0.90 [0.90-0.90] n.a.

Positive predictive
value1

0.31 [0.31-0.32] 0.29 [0.29-0.29] 0.20 [0.20-0.20] n.a.

Discrimination slope 0.15 [0.15-0.15] 0.15 [0.15-0.15] 0.12 [0.12-0.13] n.a.

Calibration-slope 0.63 [0.63-0.63] 0.67 [0.66-0.67] 0.44 [0.43-0.45] n.a.

Calibration in the
large

-0.01
[-0.01 to -0.01]

-0.01
[-0.01 to -0.01]

0.00
[-0.00 to 0.00]

n.a.

∆ Net benefitNone

(w.r.t. treat-none)1
0.06 [0.06-0.06] 0.05 [0.05-0.05] 0.02 [0.02-0.02] n.a.

∆ Net benefitAll
(w.r.t. treat-all)1

0.06 [0.06-0.06] 0.06 [0.06-0.06] 0.04 [0.04-0.04] n.a.

Classification
threshold (%)

15.91 13.55 6.97 n.a.

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets.
AKI acute kidney injury, AUROC area under the roc curve, n.a. not applicable, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.

Table 3.A.7 Performance for aki-123 prediction in the validation cohort in the subset
of cardiac patients

aki-123 Baseline model Admission model Day1 model Day1+ model

Number of patients 1591 1559 1406 1245

aki prevalence (%) 23.95 22.39 13.94 13.49

auroc 0.77 [0.77-0.77] 0.79 [0.79-0.79] 0.82 [0.82-0.82] 0.84 [0.84-0.84]

Sensitivity1 0.60 [0.60-0.61] 0.64 [0.64-0.64] 0.59 [0.59-0.59] 0.62 [0.62-0.62]

Specificity1 0.80 [0.80-0.80] 0.79 [0.79-0.79] 0.86 [0.86-0.86] 0.90 [0.90-0.90]

Positive predictive
value1

0.49 [0.49-0.49] 0.46 [0.46-0.46] 0.41 [0.41-0.41] 0.49 [0.49-0.49]

Discrimination slope 0.20 [0.20-0.21] 0.20 [0.20-0.20] 0.25 [0.25-0.25] 0.25 [0.25-0.25]

Calibration slope 0.88 [0.88-0.88] 0.91 [0.90-0.91] 0.86 [0.85-0.86] 1.03 [1.03-1.03]

Calibration in the
large

-0.01
[-0.01 to -0.01]

-0.02
[-0.02 to -0.02]

-0.02
[-0.02 to -0.02]

-0.03
[-0.03 to -0.03]

∆ Net benefitNone

(w.r.t. treat-none)1
0.09 [0.09-0.10] 0.10 [0.10-0.10] 0.07 [0.07-0.07] 0.07 [0.07-0.07]

∆ Net benefitAll
(w.r.t. treat-all)1

0.11 [0.11-0.11] 0.07 [0.07-0.08] 0.06 [0.06-0.06] 0.09 [0.09-0.09]

Classification
threshold (%)

25.80 20.71 14.46 15.81

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets.
AKI acute kidney injury, AUROC area under the roc curve, n.a. not applicable, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 External validation was not performed as there were less than 50 patients with aki-23 in this cohort.



78 clinical prediction models for acute kidney injury

Table 3.A.8 Performance for aki-23 prediction in the validation cohort in the subset of
cardiac patients

aki-23 Baseline model Admission model Day1 model2 Day1+ model2

Number of patients 1591 1559 1406 1406

aki prevalence (%) 10.25 8.40 3.41 3.41

auroc 0.77 [0.77-0.78] 0.78 [0.78-0.78] n.a. n.a.

Sensitivity1 0.60 [0.60-0.60] 0.49 [0.49-0.49] n.a. n.a.

Specificity1 0.85 [0.85-0.85] 0.86 [0.86-0.86] n.a. n.a.

Positive predictive
value1

0.31 [0.31-0.31] 0.25 [0.25-0.25] n.a. n.a.

Discrimination slope 0.16 [0.16-0.16] 0.13 [0.13-0.13] n.a. n.a.

Calibration slope 0.54 [0.53-0.54] 0.40 [0.39-0.40] n.a. n.a.

Calibration in the
large

-0.00
[-0.00 to - 0.00]

0.00
[0.00-0.00]

n.a. n.a.

∆ Net benefitNone

(w.r.t. treat-none)1
0.04 [0.04-0.04] 0.02 [0.02-0.02] n.a. n.a.

∆ Net benefitAll
(w.r.t. treat-all)1

0.09 [0.09-0.09] 0.08 [0.08-0.08] n.a. n.a.

Classification
threshold (%)

15.91 13.55 6.97 n.a.

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets.
AKI acute kidney injury, AUROC area under the roc curve, n.a. not applicable, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 External validation was not performed as there were less than 50 patients with aki-23 in this cohort.

Table 3.A.9 Performance for aki-123 prediction in the validation cohort in the subset
of septic patients

aki-123 Baseline model2 Admission model Day1 model Day1+ model

Number of patients n.a. 455 302 290

aki prevalence (%) n.a. 48.35 22.85 23.45

auroc n.a. 0.65 [0.65-0.65] 0.76 [0.76-0.76] 0.77 [0.76-0.77]

Sensitivity1 n.a. 0.97 [0.97-0.97] 0.76 [0.75-0.76] 0.62 [0.62-0.63]

Specificity1 n.a. 0.11 [0.11-0.12] 0.64 [0.64-0.64] 0.78 [0.77-0.78]

Positive predictive
value1

n.a. 0.50 [0.50-0.51] 0.39 [0.39-0.39] 0.46 [0.46-0.46]

Discrimination slope n.a. 0.09 [0.09-0.10] 0.18 [0.18-0.18] 0.17 [0.17-0.17]

Calibration slope n.a. 0.68 [0.67-0.68] 0.67 [0.67-0.69] 0.95 [0.96-0.98]

Calibration in the
large

n.a. 0.01
[0.01-0.01]

-0.03
[-0.03 to -0.03]

-0.06
[-0.07 to -0.06]

∆ Net benefitNone

(w.r.t. treat-none)1
n.a. 0.35 [0.35-0.35] 0.13 [0.13-0.13] 0.12 [0.12-0.12]

∆ Net benefitAll
(w.r.t. treat-all)1

n.a. 0.00 [-0.00-0.00] 0.02 [0.02-0.02] 0.02 [0.02-0.02]

Classification
Threshold (%)

n.a. 20.71 14.46 15.81

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets.
AKI acute kidney injury, AUROC area under the roc curve, n.a. not applicable, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 The baseline model cannot be evaluated in this cohort as sepsis is only known upon icu admission.
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Table 3.A.10 Performance for aki-23 prediction in the validation ngal cohort
aki-23 ngal Admission model Combined model

Classification
threshold

150 200 400 13.55% 9.18%

0.0798 0.0916 0.155

Number of
patients

2081 2081 2081

aki prevalence
(%)

12.59 12.59 12.59

auroc 0.79 [0.79-0.79] 0.79 [0.79-0.79] 0.83 [0.83-0.83]

Sensitivity 0.92 [0.92-0.92] 0.80 [0.80-0.80] 0.45 [0.44-0.45] 0.65
[0.65-0.65]1

0.81
[0.81-0.81]2

Specificity 0.38 [0.38-0.38] 0.61 [0.61-0.61] 0.91 [0.91-0.91] 0.78
[0.78-0.77]1

0.73
[0.73-0.73]2

Positive
predictive value

0.18 [0.17-0.18] 0.23 [0.23-0.23] 0.41 [0.41-0.41] 0.29
[0.30-0.30]1

0.31
[0.31-0.31]2

Discrimination
slope

0.15 [0.15-0.15] 0.15 [0.15-0.15] 0.19 [0.19-0.19]

Calibration-slope 0.70 [0.69-0.70] 0.69 [0.68-0.69] 0.81 [0.81-0.81]

Calibration in
the large

0.00 [0.00-0.00] -0.01
[-0.01-0.01]

0.00 [0.00-0.00]

∆ Net
benefitNone
(w.r.t.
treat-none)

0.06 [0.06-0.06] 0.07 [0.07-0.07] 0.04 [0.04-0.04] 0.05
[0.05-0.05]1

0.08
[0.08-0.08]2

∆ Net benefitAll
(w.r.t. treat-all)

0.00 [0.00-0.00] 0.02 [0.02-0.02] 0.07 [0.07-0.07] 0.06
[0.06-0.06]1

0.03
[0.03-0.03]2

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets. Values
highlighted in bold are significantly different from the value in the previous column at a statistical level of P below
0.05.
AKI acute kidney injury, AUROC area under the roc curve, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 Evaluated at the threshold that maximized sensitivity and specificity in the validation cohort. Classification thresholds
are reported in the first row..
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Table 3.A.11 Performance for aki-123 prediction in the validation ngal cohort in the
subset of cardiac patients

A) aki-123 ngal Admission model Combined model

Classification
threshold

150 200 400 20.71% 20.98%

0.19 0.22 0.36

Number of
patients

1405 1405 1405

aki prevalence
(%)

22.92 22.92 22.92

auroc 0.74 [0.74-0.74] 0.80 [0.80-0.80] 0.82 [0.81-0.82]

Sensitivity 0.68 [0.68-0.68] 0.56 [0.56-0.56] 0.25 [0.25-0.25] 0.65
[0.65-0.65]1

0.68
[0.67-0.68]2

Specificity 0.65 [0.65-0.65] 0.79 [0.79-0.79] 0.96 [0.96-0.96] 0.79
[0.79-0.79]1

0.82
[0.82-0.82]2

Positive
predictive value

0.37 [0.37-0.37] 0.45 [0.45-0.45] 0.65 [0.65-0.66] 0.48
[0.48-0.48]1

0.52
[0.52-0.53]2

Discrimination
slope

0.12 [0.12-0.12] 0.21 [0.21-0.21] 0.23 [0.23-0.23]

Calibration-slope 0.78 [0.77-0.78] 0.91 [0.91-0.92] 0.82 [0.82-0.82]

Calibration in
the large

0.00 [0.00-0.00] -0.02
[-0.02 to -0.02]

0.00 [0.00-0.00]

∆ Net
benefitNone
(w.r.t.
treat-none)

0.09 [0.09-0.09] 0.08 [0.08-0.08] 0.04 [0.04-0.04] 0.11
[0.11-0.11]1

0.12
[0.12-0.12]2

∆ Net benefitAll
(w.r.t. treat-all)

0.05 [0.05-0.05] 0.07 [0.07-0.07] 0.25 [0.25-0.25] 0.07
[0.07-0.07]1

0.07
[0.07-0.07]2

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets. Values
highlighted in bold are significantly different from the value in the previous column at a statistical level of P below
0.05.
AKI acute kidney injury, AUROC area under the roc curve, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 Evaluated at the threshold that maximized sensitivity and specificity in the entire validation cohort. Classification
thresholds are reported in the first row.



3.A appendix 81

Table 3.A.12 Performance for aki-23 prediction in the validation ngal cohort in the
subset of cardiac patients

B) aki-23 ngal Admission model Combined model

Classification
threshold

150 200 400 13.55% 9.18%

0.08 0.09 0.16

Number of
patients

1405 1405 1405

aki prevalence
(%)

9.11 9.11 9.11

auroc 0.80 [0.79-0.80] 0.78 [0.78-0.78] 0.84 [0.84-0.85]

Sensitivity 0.89 [0.89-0.89] 0.77 [0.77-0.78] 0.34 [0.34-0.34] 0.50
[0.50-0.50]1

0.70
[0.70-0.70]2

Specificity 0.43 [0.42-0.43] 0.67 [0.67-0.68] 0.95 [0.95-0.95] 0.86
[0.86-0.86]1

0.84
[0.84-0.84]2

Positive
predictive value

0.13 [0.13-0.14] 0.19 [0.19-0.19] 0.39 [0.38-0.39] 0.26
[0.26-0.27]1

0.31
[0.31-0.31]2

Discrimination
slope

0.09 [0.09-0.09] 0.14 [0.13-0.14] 0.13 [0.12-0.13]

Calibration-slope 0.48 [0.46-0.48] 0.45 [0.44-0.46] 0.59 [0.58-0.60]

Calibration in
the large

0.01 [0.01-0.01] -0.01
[-0.01 to -0.00]

0.00 [0.00-0.00]

∆ Net
benefitNone
(w.r.t.
treat-none)

0.03 [0.03-0.03] 0.04 [0.04-0.04] 0.02 [0.02-0.02] 0.03
[0.03-0.03]1

0.05
[0.05-0.05]2

∆ Net benefitAll
(w.r.t. treat-all)

0.01 [0.01-0.01] 0.03 [0.03-0.03] 0.09 [0.09-0.09] 0.07
[0.07-0.07]1

0.04
[0.04-0.04]2

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets. Values
highlighted in bold are significantly different from the value in the previous column at a statistical level of P below
0.05.
AKI acute kidney injury, AUROC area under the roc curve, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 Evaluated at the threshold that maximized sensitivity and specificity in the entire validation cohort. Classification
thresholds are reported in the first row.
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Table 3.A.13 Performance for aki-123 prediction in the validation ngal cohort in the
subset of septic patients

aki-123 ngal Admission model Combined model

Classification
threshold

150 200 400 20.71% 20.98%

0.20 0.23 0.37

Number of
patients

438 438 438

aki prevalence
(%)

48.17 48.17 48.17

auroc 0.71 [0.71-0.71] 0.65 [0.65-0.65] 0.74 [0.74-0.74]

Sensitivity 0.95 [0.95-0.95] 0.85 [0.85-0.85] 0.56 [0.56-0.57] 0.97
[0.97-0.97]1

0.98
[0.98-0.98]2

Specificity 0.19 [0.18-0.19] 0.32 [0.32-0.32] 0.74 [0.73-0.74] 0.12
[0.12-0.12]1

0.10
[0.10-0.10]2

Positive
predictive value

0.52 [0.52-0.53] 0.54 [0.54-0.54] 0.67 [0.66-0.67] 0.50
[0.50-0.50]1

0.51
[0.50-0.51]2

Discrimination
slope

0.18 [0.18-0.18] 0.10 [0.09-0.10] 0.19 [0.19-0.19]

Calibration slope 0.74 [0.73-0.74] 0.69 [0.68-0.69] 0.97 [0.97-0.98]

Calibration in
the large

-0.07
[-0.07 to -0.07]

0.02 [0.01-0.02] 0.05 [0.05-0.05]

∆ Net
benefitNone
(w.r.t.
treat-none)1

0.36 [0.36-0.36] 0.32 [0.32-0.32] 0.19 [0.19-0.19] 0.35
[0.35-0.35]1

0.36
[0.36-0.36]2

∆ Net benefitAll
(w.r.t. treat-all)1

0.00 [0.00-0.00] -0.01
[-0.01 to -0.01]

0.00 [0.00-0.01] 0.00
[-0.00 to -0.00]1

0.01
[0.01-0.01]2

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets. Values
highlighted in bold are significantly different from the value in the previous column at a statistical level of P below
0.05.
AKI acute kidney injury, AUROC area under the roc curve, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
2 Evaluated at the threshold that maximized sensitivity and specificity in the entire validation cohort. Classification
thresholds are reported in the first row.



3.A appendix 83

Table 3.A.14 Performance for aki-123 and aki-23 prediction using ngal and Day1

models in the validation ngal cohort
A) aki-123 ngal Day1 model

Classification
Threshold

150 200 400 14.46%

0.13 0.14 0.19

Number of patients 1779 1779

aki prevalence (%) 15.06 15.06

auroc 0.67 [0.67-0.67] 0.81 [0.81-0.81]

Sensitivity 0.81 [0.81-0.81] 0.60 [0.60-0.60] 0.17 [0.17-0.18] 0.67 [0.67-0.67]1

Specificity 0.42 [0.42-0.42] 0.65 [0.65-0.65] 0.93 [0.93-0.93] 0.81 [0.81-0.81]1

Positive predictive
value

0.20 [0.20-0.20] 0.23 [0.23-0.23] 0.30 [0.30-0.30] 0.38 [0.38-0.38]1

Discrimination slope 0.03 [0.03-0.03] 0.24 [0.24-0.24]

Calibration slope 0.57 [0.55-0.58] 0.78 [0.78-0.79]

Calibration in the
large

0.00 [0.0-0.00] -0.01
[-0.01 to -0.01]

∆ Net benefitNone

(w.r.t. treat-none)1
0.04 [0.04-0.04] 0.05 [0.05-0.05] 0.02 [0.02-0.02] 0.08 [0.08-0.08]

∆ Net benefitAll
(w.r.t. treat-all)1

0.01 [0.01-0.01] 0.02 [0.02-0.03] 0.05 [0.05-0.06] 0.06 [0.06-0.06]

B) aki-23 ngal Day1 model

Classification
threshold

150 200 400 6.97%

0.037 0.04 0.057

Number of patients 1779 1779

aki prevalence (%) 4.50 4.50

auroc 0.70 [0.70-0.70] 0.83 [0.83-0.83]

Sensitivity 0.84 [0.84-0.84] 0.69 [0.69-0.69] 0.23 [0.23-0.23] 0.56 [0.56-0.56]1

Specificity 0.39 [0.39-0.40] 0.62 [0.62-0.63] 0.92 [0.92-0.92] 0.89 [0.89-0.89]1

Positive predictive
value

0.06 [0.06-0.06] 0.08 [0.08-0.08] 0.12 [0.12-0.12] 0.20 [0.20-0.20]1

Discrimination slope 0.02 [0.02-0.02] 0.12 [0.12-0.12]

Calibration slope 0.37 [0.41-0.45] 0.42 [0.41-0.43]

Calibration in the
large

0.00 [0.00-0.00] -0.00 [-1.00-0.00]

∆ Net benefitNone

(w.r.t. treat-none)1
0.02 [0.02-0.02] 0.02 [0.02-0.02] 0.01 [0.01-0.01] 0.02 [0.02-0.02]

∆ Net benefitAll
(w.r.t. treat-all)1

0.00 [0.00-0.00] 0.00 [0.00-0.00] 0.02 [0.02-0.02] 0.04 [0.04-0.04]

A) Prediction of AKI-123. B) Prediction of aki-23. Estimated 95% confidence intervals obtained from 2000 bootstrap
replicas are shown between square brackets. Values highlighted in bold are significantly different from the value in the
previous column at a statistical level of P below 0.05.
AKI acute kidney injury, AUROC area under the roc curve, ROC receiver operator characteristic.
1 Evaluated at the threshold that maximized sensitivity and specificity in the development cohort, reported in the last
row.
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Table 3.A.15 Performance for aki-123 prediction in the subset of patients with true
and with calculated baseline serum creatinine.

aki-123 Validation ngal cohort true baseline Validation ngal cohort calculated baseline

ngal Admission
model

Combined
model

ngal Admission
model

Combined
model

Number of
patients

1623 1623 1623 458 458 458

aki-123
prevalence
(%)

26.12 26.12 26.12 30.79 30.79 30.79

auroc 0.73
[0.73-0.73]

0.79
[0.79-0.79]

0.81
[0.81-0.81]

0.74
[0.74-0.74]

0.70
[0.70-0.70]

0.76
[0.76-0.76]

Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are shown between square brackets. Values
highlighted in bold are significantly different from the value in the previous column at a statistical level of P below
0.05.
AKI acute kidney injury, AUROC area under the roc curve, ROC receiver operator characteristic

Table 3.A.16 Performance for aki-123 and aki-23 prediction models and of admission
ngal for outcome prediction

Validation cohort Validation ngal cohort

A) aki-123
model

Baseline
auroc

Admission
auroc

Day1
auroc

Day1+
auroc

Admission
auroc

ngal
auroc

Combined
auroc

Requirement
of rrt

0.73
[0.73-0.73]

0.77
[0.77-0.78]

0.84
[0.84-0.84]

0.84
[0.84-0.84]

0.77
[0.77-0.77]

0.78
[0.78-0.78]

0.82 [0.82-
0.82]

Mortality or
rrt at
hospital
discharge

0.75
[0.75-0.75]

0.80
[0.79-0.80]

0.74
[0.74-0.74]

0.74
[0.74-0.75]

0.79
[0.79-0.79]

0.67
[0.67-0.67]

0.80 [0.80-
0.80]

Mortality at
hospital
discharge

0.75
[0.75-0.75]

0.79
[0.79-0.79]

0.74
[0.74-0.74]

0.74
[0.74-0.74]

0.79
[0.79-0.79]

0.66
[0.66-0.66]

0.79 [0.79-
0.79]

B) aki-23
model

Baseline
auroc

Admission
auroc

Day1
auroc

Day1+
auroc

Admission
auroc

ngal
auroc

Combined
auroc

Requirement
of rrt

0.72
[0.72-0.72]

0.78
[0.78-0.78]

0.82
[0.82-0.82]

n.a. 0.78
[0.78-0.78]

0.78
[0.78-0.78]

0.83 [0.82-
0.83]

Mortality or
rrt at
hospital
discharge

0.76
[0.76-0.76]

0.80
[0.80-0.80]

0.76
[0.76-0.76]

n.a. 0.80
[0.80-0.80]

0.67
[0.67-0.67]

0.81 [0.81-
0.81]

Mortality at
hospital
discharge

0.76
[0.76-0.76]

0.80
[0.80-0.80]

0.76
[0.76-0.76]

n.a. 0.80
[0.80-0.80]

0.66
[0.66-0.66]

0.80 [0.80-
0.81]

A) aki-123 models. B) aki-23 models. Estimated 95% confidence intervals obtained from 2000 bootstrap replicas are
shown between square brackets. Values highlighted in bold are significantly different from the value in the previous
column at a statistical level of P below 0.05.
AKI acute kidney injury, AUROC area under the roc curve, n.a. not applicable, ROC receiver operator characteristic,
RRT renal replacement therapy.
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Figure 3.A.1 Performance of clinical prediction models in the development cohort.
a) Top row: aki-123. b) Bottom row: aki-23. First column: roc curves. Second column:
Calibration curves. Third column: Decision curves. Optimal thresholds were determined in
development cohort and are overlaid to the roc and Decision curves.

Figure 3.A.2 Performance of clinical prediction models in the validation cohort for
prediction of aki stage-23.

First column: roc curves. Second column: Calibration curves. Third column: Decision curves.
Optimal classification thresholds were determined in development cohort and are overlaid to
the roc and Decision curves.
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Figure 3.A.3 Predictions of admission models and admission ngal concentrations in
the validation cohort stratified by kdigo aki stages.

a) Admission Model for aki-123 (n=2274). b) Admission Model for aki-23 (n=2274). c)
ngal (n=2081). Horizontal lines show classification thresholds of 150 ng/mL, 200 ng/mL
and 400 ng/mL for ngal and determined in the development cohort for the clinical prediction
models as 20.71% for aki-123 and 13.55% for aki-23. Reported p-values are for Mann-
Whitney-U tests.
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Figure 3.A.4 Performance of clinical prediction models in the validation cohort in
cardiac patients.

a) Top row: aki-123. b) Bottom row: aki-23. First column: roc curves. Second column:
Calibration curves. Third column: Decision curves. Optimal thresholds were determined in
development cohort and are overlaid to the roc and Decision curves.

Figure 3.A.5 Performance of clinical prediction models in the validation cohort in
septic patients for prediction of aki-123.

The baseline model cannot be evaluated in this cohort as sepsis is only known upon icu
admission. First column: roc curves. Second column: Calibration curves. Third column:
Decision curves. Optimal thresholds were determined in development cohort and are overlaid
to the roc and Decision curves.
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Figure 3.A.6 Performance of admission clinical prediction model, admission ngal,
and the combination in the validation cohort for prediction of aki-23.

First column: roc curves. Second column: Decision curves. Optimal classification thresholds
were determined in the development cohort for the admission clinical prediction models; pre-
defined as 150 ng/mL, 200 ng/mL and 400 ng/mL for ngal; and for the combined models
as the value that maximized sensitivity and specificity in the validation cohort. Thresholds are
overlaid to the roc and Decision curves.

Figure 3.A.7 Performance of the admission clinical prediction model, admission ngal,
and the combination in the validation cohort for cardiac patients.

Top row: prediction of aki-123. Bottom row: prediction of aki-23. First column: roc curves.
Second column: Decision curves. Optimal thresholds were determined in development cohort
for the clinical prediction models and pre-defined as 150, 200 and 400 ng/mL for ngal and
are overlaid to the roc and Decision curves.
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Figure 3.A.8 Performance of the admission clinical prediction model, admission ngal,
and the combination in the validation cohort for septic patients for
prediction of aki-123.

First column: roc curves. Second column: Decision curves. Optimal thresholds were
determined in development cohort for clinical prediction models and pre-defined as 150, 200
and 400 ng/mL for ngal and are overlaid to the roc and Decision curves.

Figure 3.A.9 Performance of the admission ngal and Day1 models in the validation
cohort.

Top row: prediction of aki-123. Bottom row: prediction of aki-23. First column: roc curves.
Second column: Decision curves. Optimal thresholds were determined in development cohort
for clinical prediction models and pre-defined as 150, 200 and 400 ng/mL for ngal and are
overlaid to the roc and Decision curves.
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Figure 3.A.10 Performance of admission ngal, the admission clinical prediction
model and the combination in the validation cohort for the subset of
patients with true and with calculated creatinine baseline for prediction
of aki-123.

Top row: prediction of aki-123. Bottom row: prediction of aki-23. First column: roc curves.
Second column: Decision curves. Optimal thresholds were determined in development cohort
for clinical prediction models and pre-defined as 150, 200 and 400 ng/mL for ngal and are
overlaid to the roc and Decision curves.
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abstract

purpose : Early diagnosis of acute kidney injury (aki) is a major challenge
in the intensive care unit (icu). The AKIpredictor is a machine-learning-based
prediction model using routinely collected patient information, and is available
as an online calculator. In order to evaluate its clinical value, the AKIpredictor
is compared to predictions by physicians.

methods : Prospective observational study in the surgical icus of a tertiary
academic center. Critically ill adults without end-stage renal disease and
without aki upon admission were considered for enrollment. Using structured
questionnaires, physicians were asked upon admission, on the first morning of
icu stay, and after 24 hours, to predict the development of aki stages 2 or 3

(aki-23) during the first week of icu stay. Predictions were compared against
those made by the machine-learning models.

results : 252 patients were included, 30 (12%) developed aki-23.
Performance of physicians and AKIpredictor were, respectively: upon icu

admission area under the receiver operating characteristic curve (auroc) 0.80

versus 0.75 (n=120, P=0.25), with clinical benefit in ranges (0-26%) versus (0-
74%); on the first morning, auroc 0.94 versus 0.89 (n=187, P=0.27) with main
clinical benefit in ranges (0-10%) versus (0-48%); after 24 hours, auroc 0.94

versus 0.89 (n=89, P=0.09) with main clinical benefit in ranges (0-67%) versus
(0-50%).

conclusions : There was no significant differences in discrimination
between predictions of aki-23 by physicians and the AKIpredictor, although
the latter showed better calibration and higher net benefit overall, because
physicians tended to overestimate the risk of aki. These findings suggest an
added value of the AKIpredictor to physicians’ predictions.
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4.1 introduction

Acute kidney injury (aki) is an abrupt decline in kidney function that is
highly prevalent in critically ill patients, with an incidence that appears to
be increasing [1–3]. aki has an unfavourable impact on both short- and long-
term outcomes, and is associated with increased financial costs [4–6]. The 2012

guidelines by the international Kidney Disease: Improving Global Outcome
(kdigo) work group have classified aki in 3 stages of ascending severity [7],
according to a quantitative increase in serum creatinine (sc) and/or a decrease
in urine output (uo). However, both are late and unspecific markers of the
underlying pathological insult. It is hypothesized that the late recognition of
aki could be one of the factors to explain the current lack of evidence based
therapeutic options that could prevent aki or attenuate its course [8–10]. Early
biomarkers have been proposed as accurate predictors of the disease, and have
a good predictive performance in certain settings [11, 12]. However, as they
are an additional lab test with a certain cost, it is necessary to identify which
subgroups of patients would benefit most from biomarker testing.

Prediction models have been proposed for the early prediction of AKI. These
models have the advantage that they do not require additional testing, but use
the information already present in the (electronic) health records [13, 14]. In
hospitalized patients, the aki prediction score developed by Forni et al. [15]
is a simple scoring system to detect hospital-acquired aki. The score was
recently externally validated [16] and showed moderate discrimination and
acceptable calibration. For trauma patients admitted to critical care, Haines and
colleagues developed a prediction model showing good discrimination for any
stage of aki and for its more severe stages [17]. Finally, in a general population
of critically ill patients, the AKIpredictor models [18] were developed with
advanced machine learning techniques, on a large patient database from
a multi-center randomized controlled trial (epanic) [19]. The AKIpredictor
predicted aki at different time points in the clinical course of the patient (before
admission, upon admission, on the first morning after admission, and after
24h), for any stage of aki (aki-123) or only the most severe forms (aki-23).
The models’ performance was assessed in a separate validation cohort, and
compared against serum neutrophil gelatinase-associated lipocalin (ngal), a
biomarker for aki [20, 21]. The AKIpredictor not only proved a high degree
of accuracy, but it also outperformed the biochemical test [18]. Some of the
models have been made available as a free online calculator on the website
http://www.akipredictor.com.

The potential usefulness of the AKIpredictor [16, 22–24], or similar prediction
models [13, 25], has been recognized. However, it remains to be investigated

http://www.akipredictor.com
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whether and how these models could be used in clinical practice. Using the
available clinical data to estimate risk of critically ill patients to developing
complication, such as aki, is part of the daily practice of icu physicians. It
may be expected that they will perform well in this task, especially if they
are experienced. Computerized aki prediction models should be evaluated
prospectively in new and previously unseen patient cohorts. In addition,
comparing them against predictions by physicians could add a dimension to
the evaluation. In the present study, performance of the AKIpredictor to predict
the most severe stages of aki (aki-23) within the first week of icu stay, will be
evaluated prospectively, and compared against predictions by icu physicians.

4.2 methodology

This prospective observational study was performed between May and June
2018, in the surgical icus of the University Hospitals Leuven (UZLeuven),
Leuven, Belgium. The Institutional Review Board approved the enrollment and
the protocol for the collection of anonymized clinical data, providing waiver
of consent for study participation. The study is registered at ClinicalTrials.gov
(NCT03574896).

4.2.1 Study population

All adult critically ill patients were eligible for the study. Patients were excluded
if they had pre-existing end-stage renal disease or had already developed any
stage of aki at icu admission. Patients for whom the 3 prediction moments
occurred during on-call time were excluded because of the unavailability of
research staff to hand out the questionnaires. In case of multiple icu admissions
for a single patient, only the first admission was considered.

4.2.2 Endpoint

The primary objective of the study was the comparison of the performances of
AKIpredictor and physicians in predicting aki-23 in the first 7 days following
icu admission. Comparison was made upon icu admission (admission cohort),
on the first morning of icu stay (day1 cohort) and after 24 hours of icu stay
(day1+ cohort). Secondary objective were a) to assess the influence of the level
of seniority on the accuracy of physicians’ predictions and the feasibility of
making predictions within a 3-hour window for physicians; b) to compare the
AKIpredictor performance using two definitions for aki (sc versus sc and uo).
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4.2.3 Acute kidney injury

aki was staged each day of the week after icu admission using the sc and
uo criteria from the kdigo guidelines [7]. To compare the performance of
AKIpredictor with the development study [18], where aki was classified only
by sc, aki was also staged each day based on the sc criterion only. Baseline
sc values were defined as the lowest sc value that could be identified in the
3 months prior to icu admission. In case no baseline sc value was available, a
glomerular filtration rate of 75 ml/min/1.73m2 [26] was assumed, and baseline
sc was calculated using the Modification of Diet in Renal Disease (mdrd)
formula.

4.2.4 AKIpredictor predictions

The AKIpredictor algorithm used routinely collected patient information
for prediction of aki-23. All predictions and confidence intervals from the
AKIpredictor algorithm were retrospectively calculated.

4.2.5 Physicians’ predictions

Questionnaires (Appendix, Figure 4.A.9) were handed to physicians at the
same target time points than the AKIpredictor: upon icu admission, on the
first morning of icu stay, and at 24 hours after admission. Prospective data
collection included:

• Physicians’ binary predictions: Do you think this patient will develop aki

stage 2 or 3 over the next 7 days? (yes-no). Binary predictions were used to
determine physicians’ classification threshold and their derived sensitivity
and specificity.

• Physicians’ prediction as percentage: What is your prediction that this patient
will develop aki stage 2 or 3 over the next 7 days? (scale 0-100%)

• Physicians’ level of confidence about their prediction: How confident do you
feel about this prediction? (low-medium-high)

To accommodate for physicians’ availability, questionnaires were considered
valid if collected within 1 hour before up to 3 hours after the predefined target
time point. When several predictions were available per patient, an average of
the predictions was calculated and, in a subsequent analysis, compared to the
average weighted by physician experience and level of confidence.
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Two categories of physicians were interviewed: junior (junior residents) and
senior (senior residents and staff members). Junior residents are in training for
their basic specialty (anesthesiology, internal medicine, or pediatrics), and have
at least 3 years of experience as a physician. Senior residents are physicians
in training for intensive care medicine, and have already obtained their basic
specialty (in anesthesiology, internal medicine, or pediatrics). All staff members
are certified specialists in intensive care medicine. Their age, gender and
seniority level (years of experience and category) were recorded (Appendix,
Figure 4.A.10).

4.2.6 Statistical analysis

Data are presented as means and standard deviations (sd), medians and
interquartile ranges (iqr), and numbers and proportions where appropriate.
Statistical significance was set at P < 0.05. All analyses were performed using
Python version 2.7.13 (Python Software Foundation, http://www.python.org),
Scipy version 0.18.1 (SciPy.org) and R version 3.5.0.

Reporting of the study was performed using the strobe guidelines [27].

4.2.6.1 Diagnostic accuracy assessment

Discrimination, calibration and clinical usefulness [28] were used to evaluate
the performance of AKIpredictor and physicians. Discrimination refers to
how well the predictions allow to distinguish patients with and without
aki. Discrimination was evaluated with the receiver operating characteristic
(roc) curve and the area under the receiver operating characteristic curve
(auroc) [29]. The DeLong test [30] from the proc R package [31] was used
for auroc comparison. Calibration refers to the agreement between predicted
probabilities and the observed frequency of aki in the population. Calibration
was assessed using calibration belts or curves where appropriate, together
with the distribution of patient numbers [32]. Finally, the clinical usefulness
of the model was assessed by the difference between the expected benefit
and the expected harm associated with model classification of aki. Clinical
usefulness was visualized using decision curves and reported using ranges
above treat-all and treat-none curves [33, 34]. An example of decision curve
with its interpretation is given in Figure 4.1. To assess the added value of
the AKIpredictor to the predictions by physicians, a multivariable logistic
regression was used to combine the estimated aki risk by the AKIpredictor
with the one by physicians.

http://www.python.org
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Figure 4.1 Illustration of decision curve analysis.
The example illustrates the decision curve of a model to predict whether patients will have
aki, from a population with an aki prevalence of 9%. In decision curve analysis, the
classification threshold corresponds to the cutoff above which a patient is classified as ”will
develop aki”. Knowing whether the patient will or will not have aki will trigger different
therapeutic interventions. Low classification thresholds are used when the associated therapy
is not harmful, hence patients will not suffer from being classified as false positives. High
classification thresholds are used when the associated therapy is toxic or has side effects and
therefore, it is important to not classify patients as at risk for aki when they are not (thereby
limiting the number of false positive classifications). Currently, preventive measures for aki
are optimization of hemodynamics and prevention of nephrotoxicity, amenable to all patients
and therefore corresponding to low classification thresholds.
The net benefit is a weighted measure between true and false positives depending on the
classification threshold [33]. The maximum net benefit is obtained by detecting all patients
who will later develop aki, therefore this net benefit is the prevalence of aki in the population
(9%). The line corresponding to the trivial assumption that all patients will have aki can be
drawn (classify all as aki, traditionally called treat-all). Similarly, the minimum net benefit
is obtained by considering that no patient will develop aki and is 0 (classify none as aki,
traditionally called treat-none). To be clinically useful, a model should have a higher net
benefit than the two trivial classifications. Here, being slightly above the classify all as aki
curve, the model shows usefulness in the range 0-43%. Above 43%, the models shows negative
net benefit, which reflects harm and should be avoided in clinical practice. Here, the model
is clinically relevant as it shows benefit for low risk thresholds corresponding to its associated
preventive measures.
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4.3 results

4.3.1 Study population

A total of 348 adults were considered for study inclusion, of which 58 were
excluded because the 3 prediction moments occurred during on-call time, 23

due to aki at icu admission, 11 due to readmission, and 4 for end-stage renal
disease (Figure 4.2). Two hundred and fifty-two patients remained for analysis.

Patients’ characteristics are reported in Table 4.1, for all patients, and Table
4.A.4, for patients with predictions by physicians. Within the first week of icu

stay, 30 (12%) patients developed aki-23 using both sc and uo criteria and 23

(9%) with sc criteria only. Baseline serum creatinine was available in 202 (80.2%)
patients, and was calculated in the remaining 50 (19.8%).

Figure 4.2 Flow chart

4.3.2 AKIpredictor predictions

Predictions were calculated in 252 patients at icu admission, in 238 patients
on the first morning of icu stay (Figure 4.2, 11 excluded for aki on day 1, 3

excluded for missing aki on day 1), and in 195 patients after 24 hours (Figure
4.2, 33 excluded for discharge within 24 hours, 8 without an arterial line, 4

without urine output records).
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Table 4.1 Patient characteristics and clinical outcomes
Admission cohort Day1 cohort Day1+ cohort

N 252 238 195

aki-23 by sc and uo, n
(%)

30 (12) 17 (7) 17 (7)

aki-23 by sc, n (%) 23 (9) 13 (5) 13 (5)

Demographics

Age, year 65.5 (52.8-74.0) 65 (52-74) 66 (54-74)

Male gender, n (%) 155 (61.5) 146 (61.3) 121 (62.1)

Height, cm 171 (165-178) 171 (165-178) 171 (165-178)

Weight, kg 75.2 (65.0-86.3) 75.0 (65.0-86.0) 75.0 (63.5-85.7)

Diabetic, n (%) 6 (2.4) 5 (2.1) 3 (1.5)

Baseline sc, mg/dL 0.88 (0.73-1.05) 0.88 (0.73-1.04) 0.88 (0.73-1.06)

Clinical parameters

Elective admission, n (%) 154 (61.1) 149 (62.6) 124 (63.6)

Surgical category, n (%)

Cardiac 103 (40.9) 98 (41.1) 85 (43.6)

Transplant 7 (2.8) 7 (2.9) 7 (3.6)

Others 92 (36.5) 86 (35.8) 71 (36.4)

Medical category, n (%) 50 (19.8) 47 (19.8) 32 (16.4)

Hemodynamic support at
icu admission, n (%)

Pharmacological 165 (65.5) 158 (66.4) 140 (71.8)

Mechanical 4 (1.6) 3 (1.3) 3 (1.5)

Blood glucose at icu
admission, mg/dL

135 (113-155) 135 (114-155) 137 (116-160)

Sepsis upon icu admission,
n (%)

20 (7.9) 18 (7.6) 16 (8.2)

Maximum lactate on day 1,
mg/dL

1.6 (1.1-2.4) 1.5 (1.1-2.3) 1.6 (1.1-2.4)

Bilirubin on day 1, mg/dL 0.54 (0.37-0.84) 0.54 (0.37-0.83) 0.53 (0.38-0.83)

apache II score on day 1 14 (10-17) 13.5 (10-17) 14 (11-17)

sofa score on day 1 9 (5-11) 9 (5-11) 9 (6-12)

sc on day1, md/dL 0.87 (0.68-1.08) 0.87 (0.68-1.05) 0.88 (0.70-1.08)

Monitoring parametersa

Urine slope, ml/hour -0.00014 (-0.00052 to
0.00034)

-0.00013 (-0.00051 to
0.00035)

-0.00014 (-0.00046 to
0.00032)

Total amount of urine,
mL/hour

1025 (770-1437) 1047 (789-1451) 1048 (495-1473)

Blood pressure below 60
mmHg, min

10 (3-50) 10 (3-48) 11 (4-51)

Blood pressure above
average, min

644 (569-696) 647 (569-698) 655 (593-716)

Dose of vasopressors, mg 2.7 (0-8.9) 2.7 (0-8.6) 4.3 (0-9.7)

Data are reported as median (iqr) unless otherwise indicated.
a measured during first 24 hours of icu stay.



106 machine learning versus physicians’ predictions of acute

kidney injury

When classifying aki only by sc, the admission AKIpredictor predicted aki-
23 with auroc 0.78 and clinical benefit in ranges (0-74%) (Appendix, Figure
4.A.1). On day 1, auroc was 0.94 with clinical benefit in ranges (0-48%). After
24 hours, auroc was 0.93 with clinical benefit in ranges (3-43%).

When classifying aki by sc and uo criteria, the admission AKIpredictor
predicted aki-23 with auroc 0.76 and clinical benefit in ranges (0-74%) (Figure
4.3). On day 1, auroc was 0.87 with clinical benefit in ranges (0-48%). After 24

hours, auroc was 0.85 with clinical benefit in ranges (0-43%).

4.3.3 Physicians’ predictions

Forty-three physicians of which 24 (55.8%) junior residents, 8 (18.6%) senior
residents, and 11 (25.6%) staff members filled questionnaires (Appendix, Table
4.A.1). They provided a total of 709 predictions (Appendix, Table 4.A.2): 183

predictions about 120 patients at icu admission, 394 predictions about 187

patients on the morning of the first day, and 128 predictions about 89 patients
after 24 hours of icu stay. Although the protocol allowed gathering physicians’
predictions 1 hour before the time point, the majority of the predictions were
obtained later (Appendix, Table 4.A.2, 183 (100%) on admission, 383 (97.2%) on
first morning, 77 (60.2%) at 24 hours). On average, predictions were obtained
68 minutes after icu admission, 140 minutes after day 1 and 20 minutes after 24

hours of icu stay. Table 4.A.3 (Appendix) presents the physicians’ predictions
by confidence level and seniority level. Overall, confidence obtained at later
time points was higher, with 53 (29%) highly confident at admission, 147

(37.3%) highly confident at day 1, 55 (43%) highly confident after 24 hours.

Upon admission, physicians predicted aki with auroc 0.80 and clinical
benefit in ranges (0-26%) (Figure 4.4). On day 1, auroc was 0.94 with
clinical benefit in ranges (0-10%+90-96%). After 24 hours, auroc was 0.95

with clinical benefit in ranges (0-36%+40-48%+50-67%+80-100%). Figure 4.A.2
(Appendix) shows performance when using the binary predictions from the
physicians, which allowed for the identification of the classification threshold
they adopted: sensitivity and specificity were, respectively, 55% and 82% on
admission, 85% and 86% on day 1, 75% and 90% after 24 hours. Averaging
predictions by weighing for physicians’ seniority and level of confidence did
not improve predictive performance (Appendix, Figure 4.A.3). However, as
compared to junior physicians, senior physicians showed higher discrimination
and calibration at all time points (Appendix Figure 4.A.4, auroc 0.81 vs 0.85 at
admission; auroc 0.87 vs 0.92 on day 1; auroc 0.90 vs 0.96 at 24 hours for junior
and senior, respectively). Finally, when physicians expressed low or medium
confidence in their predictions, their performance was worse (Appendix Figure
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Figure 4.3 Performance of AKIpredictor for prediction of aki-23 by sc and uo

(a) At icu admission (n=252), auroc was 0.76, clinical benefit in ranges (0-74%); (b) On
the first morning of icu stay (n=238), auroc was 0.87, clinical benefit in ranges (0-48%);
(c) After 24 hours (n=195), auroc was 0.85, clinical benefit in ranges (0-43%).
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4.A.5, auroc 0.74 versus 0.85 at admission, auroc 0.93 versus 0.92 on day 1,
and auroc 0.89 versus 0.98 at 24 hours, for medium versus high confidence
respectively).

In the subset of patients with physician predictions (Figure 4.4), AKIpredictor
predicted aki with auroc 0.75 (P=0.25 as compared to clinicians) with clinical
benefit in ranges (0-74%), higher than physicians in ranges (14-74%). On day 1,
auroc was 0.89 (P=0.27) with higher clinical benefit compared with physicians
in ranges (0-48%). Finally, after 24 hours, auroc was 0.89 (P=0.09) with higher
clinical benefit compared with physicians in ranges (0-20%+23-50%).

4.3.4 Combining AKIpredictor with physicians’ predictions

In the subset of patients where physicians’ predictions were combined with the
AKIpredictor, no improvement in discriminability was observed as compared
to physicians (P=0.96, 0.39, 0.41 respectively for admission, day 1 and after 24

hours), but a better calibration resulted in wider and higher ranges of clinical
benefit at all time points (Appendix, Figure 4.A.6). The same was observed
for junior physicians only (Appendix, Figure 4.A.7), and for low-medium
confidence predictions (Appendix, Figure 4.A.8).

4.4 discussion

In this study, we compared the performance of the aki risk estimated by
physicians versus the one provided by AKIpredictor, a machine learning based
clinical prediction model [18]. The comparison was made at three different
time points: upon icu admission, at the first morning, and after 24 hours of icu

stay. There was no statistically significant difference in discrimination between
physicians and AKIpredictor at any timepoint. However, on average, physicians
required more time to provide predictions.

Decision curve analysis helps to identify the expected clinical benefit or harm
when deciding for treatment at different risk levels. Compared to physicians,
the AKIpredictor showed improved net benefit for aki classification thresholds
above 26% upon admission and for almost all ranges of aki classification
thresholds on day 1 and after 24 hours. This comparison provides meaningful
insight on how the tool could be used in clinical practice.

As shown by the calibration curve, physicians tend to over-estimate the risk
of aki. In the decision curve, this behavior results in a net benefit similar to
considering that all patients will develop aki (treat-all curve) [35]. Currently
there is no treatment for aki and preventive measures are mainly supportive,
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Figure 4.4 Comparison of performance of AKIpredictor and physicians for prediction
of aki-23 by sc and uo.

The black dot represents the classification threshold from the physicians. (a) At icu admission
(n=120), aurocs were 0.80 and 0.75 (P=0.25), clinical benefit in ranges (0-26%), (0-74%)
for physicians, and AKIpredictor respectively. Physicians’ classification threshold achieved 55%
sensitivity and 82% specificity. (b) On the first morning of icu stay (n=187), aurocs were
0.94 and 0.89 (P=0.27), clinical benefit in ranges (0-10%+90-96%), (0-48%) for physicians,
and AKIpredictor respectively. Physicians’ classification threshold achieved 85% sensitivity and
86% specificity. (c) After 24 hours (n=89), aurocs were 0.95 and 0.89 (P=0.09), with
clinical benefit in ranges (0-36%+40-48%+50-67%+80-100%), (0-58%) for physicians and
AKIpredictor respectively. Physicians’ classification threshold achieved 75% sensitivity and 90%
specificity.
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so there would be no harm from misclassifying a patient as high-risk. However,
in the hypothetical context of enrolling high risk patients for a clinical trial
or if a new potentially toxic or expensive therapy for aki became available,
this approach would induce selection bias, unnecessary exposure of patients
to potential side-effects or higher costs. This situtation corresponds to a high
classification threshold for aki, for which only the AKIpredictor showed clinical
benefit.

Additional benefits of the AKIpredictor were highlighted by this study.
First, it allows stratifying patients consistently, with similar performance to
a well-trained clinical staff. Second, it provides predictions at fixed time points
without delays: on average, physicians required instead more time to provide
predictions. Third, although senior physicians are the best at predicting aki,
they have to supervise a higher number of patients and might benefit from an
electronic warning system that draws their attention to patients at risk. Fourth,
when doctors perceive that it is more difficult to predict and express a low
or medium confidence in their predictions, these predictions are actually less
performant. In such cases, they might find it useful to consult the AKIpredictor.

This study is the first prospective validation study of the AKIpredictor.
Compared to the results of the original development study [18], the models
showed similar performance upon icu admission and an even higher
performance on the first morning and after 24 hours of icu stay. This
observed improvement might be explained by the difference in patient
population (higher prevalence of cardiac surgery and sicker patients with more
comorbidities in the initial development population). Indeed, AKIpredictor has
shown worse performance in septic patients, who are less prevalent in this
study. This might be explained by not predicting during on-call time, which
resulted in fewer unplanned admissions, such as sepsis, and more planned
admissions, such as surgery. The difference in population might also explain
the lower prevalence of severe aki as compared to the initial development
population (9% vs 12%) and other studies [36]. Furthermore, the design of
the current study might have raised physicians’ awareness towards the kidney,
which in turn could have prevented aki development and hence affected aki

incidence.

It is striking that, although the AKIpredictor was developed to predict aki

based on sc and not uo criteria, in this study, the model performed well, even
when aki was defined by both sc and uo.
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4.4.1 Strengths and limitations

This study had several strengths. First, it is prospective in design, and hence
detailed in data collection. Second, in order to reduce bias from lack of
collaboration by physicians, interviewers made efforts to obtain questionnaires
for all included patients: predictions for all but 12 patients were gathered for
at least one time point. In addition, when feasible, predictions were obtained
from both junior and senior physicians, allowing for secondary analysis based
on physicians’ experience. Finally, to the best of our knowledge, this study is
the first of its kind to assess physicians’ estimation of aki risk, which provides
benchmarking opportunities for comparison against other aki prognosticators
such as biomarkers.

This study had the following limitations: first, as a single center study,
findings have to be used with caution, as they might not generalize to other
centers. In particular, fewer predictions were available on admission and after
24 hours. Second, a bias in favor of physicians cannot be excluded as 1)
the AKIpredictor is not optimized to predict aki defined by uo as in the
development study the definition of aki was only base on the sc criterion
[18]. Additionally, due to the low prevalence of aki-23 after 24 hours of icu

stay, no model was developed [18] . Therefore, at 24 hours, the comparison
is made using the AKIpredictor aki-123 model. 2) Physicians received 3 more
hours to provide their predictions. Therefore, they had access to later clinical
information than the AKIpredictor. 3) Physicians did not provide predictions
at all time points. However, we limited this bias by asking predictions for at
least one time point in all but 12 patients. Third, predictions from junior and
senior physicians were not available for all patients. Therefore, when averaging
based on physicians’ experience and level of confidence, performance was
not improved although the separate analysis clearly showed a difference in
performance on both levels. Finally, we cannot exclude a Hawthorne effect: the
design of the current study might have raised physicians’ awareness towards
the kidney, which could have favored a more meticulous clinical management
to prevent aki.

4.5 conclusion

Physicians can predict aki with good discrimination, but tend to overestimate
the risk of aki, pointing to poor calibration in the low-risk patients. The
AKIpredcitor performed on par with physicians in terms on discrimination,
but did better in terms of calibration and net benefit. This highlights the
potential uses of AKIpredictor in clinical practice: selection of high risk
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patients, or reducing false positives in studies evaluating new and potentially
harmful therapies. Additionally, our findings suggest a potential for overall
improvement of care with the concurrent use of physicians’ expertise and the
AKIpredictor. External validation and further studies of the AKIpredictor are
warranted.
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4.a appendix

A
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C

Figure 4.A.1 Performance of AKIpredictor for prediction of aki-23 by sc

(a) At icu admission (n=252), auroc 0.78, clinical benefit in ranges (0-74%). Optimal cutoff
was 8%; (b) On the first morning of icu stay (n=240), auroc 0.94, clinical benefit in ranges
(0-48%). Optimal cutoff was 6%; (c) After 24 hours (n=195), auroc 0.93, clinical benefit
in ranges (3-43%). Optimal cutoff was 12%.
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Figure 4.A.2 Performance of binary predictions by physicians.
(a) Upon icu admission, auroc 0.71 (n=120). Physicians’ classification threshold achieved
55% sensitivity and 82% specificity. (b) On day 1, auroc 0.86 (n=187). Physicians’
classification threshold achieved 85% sensitivity and 86% specificity. (c) After 24 hours,
auroc 0.82 (n=89). Physicians’ classification threshold achieved 75% sensitivity and 90%
specificity.

Table 4.A.1 Physicians’ generalities

Physicians

N 43

Age, years, median (iqr) 30 (29-34)

Male gender, n (%) 25 (58.1)

Seniority level, n (%)

Junior resident 24 (55.8)

Senior resident 8 (18.6)

Staff member 11 (25.6)

Table 4.A.2 Description of physicians’ predictions

Admission Day1 Day1+

N patient 120 187 89

N total 183 394 128

Self-filled predictions, n (%) 18 (9.8) 4 (1.0) 16 (12.5)

Predictions collected by interviewer, n (%) 165 (90.2) 390 (99.0) 112 (87.5)

Predictions collected before time point, n (%) 0 (0) 11 (2.8) 51 (39.8)

Predictions collected after time point, n (%) 183 (100) 383 (97.2) 77 (60.2)

Time between prediction and time point, min,
median (iqr)

68 (36-105) 140
(120-150)

20 (-26 to
83)
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Figure 4.A.3 Performance of clinicians when predictions were averaged using weight
for clinicians’ expertise and level of confidence.

(a) Upon admission, aurocs were 0.80, 0.80, for non-weighted and weighted average
respectively; with similar clinical benefit ranges from (0-25%). (b) On day 1, aurocs were
0.89, 0.93, for non-weighted and weighted average respectively; with similar clinical benefit
ranges from (0-14%). (c) After 24 hours, aurocs were 0.94, 0.94 for non-weighted and
weighted average respectively, with higher clinical benefit ranges within (0-34% + 50-72%)
for weighted average.
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Figure 4.A.4 Performance of physicians split by seniority level.
(a) Upon admission, aurocs were 0.81 and 0.85, for junior and senior respectively.
Classification threshold had 55% sensitivity and 75% specificity for junior, 71% sensitivity
and 94% specificity for senior. (b) On day 1, aurocs were 0.87 and 0.92, for junior and
senior respectively. Classification threshold had 78% sensitivity and 82% specificity for junior,
91% sensitivity and 84% specificity for senior. (c) After 24 hours, aurocs were 0.90 and
0.96, for junior and senior respectively. Classification threshold had 60% sensitivity and 88%
specificity for junior, 83% sensitivity and 91% specificity for senior. Decision curves are not
represented, as they are not comparable (different patient population).
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Figure 4.A.5 Performance of physicians split by confidence level.
Low confident predictions had too few occurrences and were combined to medium confident
predictions. (a) Upon admission, aurocs were 0.74 and 0.85, for medium and high confidence
respectively. Classification threshold had 78% sensitivity and 64% specificity for medium
confidence, 75% sensitivity and 89% specificity for high confidence. (b) On day 1, aurocs
were 0.93 and 0.92, for medium and high confidence respectively. Classification threshold had
90% sensitivity and 85% specificity for medium confidence, 75% sensitivity and 95% specificity
for high confidence. (c) After 24 hours, aurocs were 0.89 and 0.98, for medium and high
confidence respectively. Classification threshold had 80% sensitivity and 74% specificity for
medium confidence, 60% sensitivity and 95% specificity for high confidence. Decision curves
are not represented, as they are not comparable (different patient population).
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Figure 4.A.6 Comparison of performance of AKIpredictor, physicians and their
combination.

The black dot represents the classification threshold from the physicians. (a) At icu admission
(n=120), aurocs were 0.80, 0.75 (P=0.25 as compared to physicians), 0.72 (P=0.96 as
compared to physicians), clinical benefit in ranges (0-26%), (0-74%), (0-96%) for physicians,
AKIpredictor, and their combination respectively. (b) On the first morning of icu stay (n=187),
aurocs were 0.94, 0.89 (P=0.27 as compared to physicians), 0.95 (P=0.39 as compared
to physicians), clinical benefit in ranges (0-10%+90-96%), (0-48%), (0-64%+84-89%) for
physicians, AKIpredictor, and their combination respectively. (c) After 24 hours (n=89),
aurocs were 0.95, 0.89 (P=0.09 as compared to physicians), 0.94 (P=0.41 as compared
to physicians), with clinical benefit in ranges (0-36%+40-48%+50-67%+80-100%), (0-58%),
(0-61%+63-93%) for physicians, AKIpredictor, and their combination respectively.
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Figure 4.A.7 Comparison of performance of junior physicians and the combination of
junior physicians with AKIpredictor.

A logistic regression is used to combine the predictions of junior physicians and of the
AKIpredictor. Consequently, an optimal calibration is obtained and the associated net benefit
represents the maximum net benefit that could be achieved by the junior physicians using the
AKIpredictor. (a) At icu admission (n=99), aurocs were 81.8, 81.8, clinical benefit in ranges
(0-26%), (4-48%+54-95%) for junior physicians and their combination with AKIpredictor
respectively. (b) On the first morning of icu stay (n=151), aurocs were 91.4, 93.0, clinical
benefit in ranges (10-13%), (0-51%+77-83%) for junior physicians, and their combination
with AKIpredictor respectively. (c) After 24 hours (n=70), aurocs were 90.5, 89.8, with
clinical benefit in ranges (0-17%+20-24%+80-91%), (0-35%+46-51%+57-70%), for junior
physicians, and their combination with AKIpredictor respectively.
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Figure 4.A.8 Comparison of performance of physicians with low-medium confidence
in their predictions and the combination of their predictions with
AKIpredictor.

A logistic regression is used to combine the low-medium confidence predictions with the ones
from the AKIpredictor. Consequently, an optimal calibration is obtained and the associated
net benefit represents the maximum net benefit that could be achieved using the AKIpredictor.
(a) At icu admission (n=99), aurocs were 74.9, 76.4, clinical benefit in ranges (0-13%), (4-
51%+56-73%) for low-medium confidence predictions and their combination with AKIpredictor
respectively. (b) On the first morning of icu stay (n=151), aurocs were 90.9, 92.2, clinical
benefit in ranges (0-9%+80-91%), (0-51%+60-63%+78-83%) for low-medium confidence
predictions, and their combination with AKIpredictor respectively. (c) After 24 hours (n=70),
aurocs were 88.3, 88.1, with clinical benefit in ranges (0-19%+20-25%+60-76%), (0-51%),
for junior physicians, and their combination with AKIpredictor respectively.



4.A appendix 121

 

 

AKIpred Validation Study 

The AKIpred Validation Study aims to compare the predictions of AKI made by a patient’s attending 
physician with those made by a computer algorithm. Please help us gather your predictions about AKI. 

But remember, we are interested only in predictions made in one (or more!) of these moments: 

 upon admission (+ 3 hours maximum) 

 on the 1st morning after admission (between 7 at 10 am) 

 and after 24 hours (up to a maximum of 27).  

According to the 2012 KDIGO guidelines, AKI is defined (and classified) in the following way: 
 Stage 1 Stage 2 Stage 3 

Serum 
creatinine 

1.5-1.9 × baseline 
OR ≥ 0.3 increase 

2.0 – 2.9 × baseline 
≥ 3.0 × baseline 

OR ≥ 4.0 increase OR RRT* 

Urine 
output 

< 0.5 ml/kg/h for ≥ 6 hours < 0.5 ml/kg/h for ≥ 12 h 
< 0.3 ml/kg/h for ≥ 24 h 

OR anuria for ≥ 12 h 
*RRT = Renal Replacement Therapy 
 

QUESTIONNAIRE 

 

PATIENT EAD .                                               . 

 

  

 
What is your prediction that this patient will develop AKI stage 2 or 3 over the next 7 days? 
(Express your estimation on a scale of 0–100 %) 

 

 
Do you think this patient will develop AKI stage 2 or 3 over the next 7 days?  

YES NO 

 
How confident do you feel about this prediction? 

STRONG CONFIDENCE MEDIUM CONFIDENCE LOW CONFIDENCE 

 
At what point in time are you making this prediction? 

UPON ADMISSION 1ST MORNING IN ICU AFTER 24 HOURS OF ICU 

 
Please specify date and time of this prediction (when you fill this questionnaire). 

DATE .            /             /                        . TIME .            :            . 

 
In order to avoid bias and to conduct sub-analyses on age, gender, degree of seniority and years of ICU 
experience, we would also like to collect some information about you. Please fill in your last name. 

.                                               .                                               .                                               . 
 

PT STUDY N. (Don’t worry about this, it will be assigned later!)  A   P   V   S                         . 

Figure 4.A.9 Prediction questionnaire.
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Figure 4.A.10 Physician questionnaire.

Table 4.A.3 Description of physicians’ predictions per seniority and confidence levels

Admission Day1 Day1+

Junior Senior Staff Junior Senior Staff Junior Senior Staff

N total 104 50 29 157 106 131 70 34 24

N (%) low confident 4
(3.8)

0
(0.0)

6
(20.7)

8
(5.0)

2
(1.9)

4
(3.0)

3
(4.3)

0
(0.0)

0
(0.0)

N (%) medium
confident

65
(62.5)

40
(80.0)

15
(51.7)

94
(59.9)

71
(67.0)

68
(51.9)

35
(50.0)

21
(61.8)

14
(58.3)

N (%) very confident 35
(33.7)

10
(20.0)

8
(27.6)

55
(35.0)

33
(31.1)

59
(45.0)

32
(45.7)

13
(38.2)

10
(41.7)
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Table 4.A.4 Patient characteristics and clinical outcomes for patients with predictions
by physicians and AKIpredictor

Admission cohort Day1 cohort Day1+ cohort

N 120 187 89

aki-23 by sc and uo, n
(%)

14 (12) 13 (7) 9 (10)

aki-23 by sc, n (%) 11 (9) 10 (5) 8 (9)

Demographics

Age, year 66 (51-74) 64 (52-74) 67 (53-74)

Male gender, n (%) 72 (60.0) 123 (65.8) 55 (61.8)

Height, cm 172 (165-178) 172 (165-179) 171 (163-178)

Weight, kg 75 (67-88) 76 (65-86) 74 (65-86)

Diabetic, n (%) 2 (1.7) 4 (2.1) 0 (0)

Baseline sc, mg/dL 0.87 (0.73-1.05) 0.88 (0.74-1.05) 0.92 (0.71-1.08)

Clinical parameters

Elective admission, n (%) 75 (62.5) 122 (65.2) 60 (67.4)

Surgical category, n (%)

Cardiac 53 (44.2) 81 (43.3) 43 (48.3)

Transplant 6 (5.0) 4 (2.1) 4 (4.5)

Others 45 (38.3) 61 (32.3) 28 (31.5)

Medical category, n (%) 15 (12.5) 41 (21.9) 14 (15.7)

Hemodynamic support at
icu admission, n (%)

Pharmacological 81 (67.5) 131 (70.1) 66 (74.2)

Mechanical 1 (0.8) 3 (1.6) 2 (2.2)

Blood glucose at icu
admission, mg/dL

134 (115-158) 135 (116-153) 138 (113-159)

Sepsis upon icu admission,
n (%)

6 (5.0) 11 (5.8) 2 (2.2)

Maximum lactate on day 1,
mg/dL

1.4 (1.0-2.2) 1.5 (1.1-2.3) 1.6 (1.1-2.4)

Bilirubin on day 1, mg/dL 0.55 (0.35-0.86) 0.54 (0.38-0.80) 0.49 (0.36-0.79)

apache II score on day 1 14 (10-17) 13 (10-17) 15 (11-17)

sofa score on day 1 9 (4-11) 9 (5-11) 10 (7-12)

sc on day1, md/dL 0.88 (0.71-1.10) 0.87 (0.71-1.03) 0.89 (0.72-1.14)

Monitoring parametersa

Urine slope, ml/hour -0.00014 (-0.0006 to
0.00046)

-0.00015 (-0.0005 to
0.00034)

-0.00021 (-0.00062 to
0.00031)

Total amount of urine,
mL/hour

1130 (903-1537) 1035 (770-1458) 1077 (788-1515)

Blood pressure below 60
mmHg, min

9 (2-38) 10 (3-51) 12 (4-86)

Blood pressure above
average, min

647 (569-707) 647 (561-695) 658 (585-708)

Dose of vasopressors, mg 2.7 (0-8.9) 3.5 (0-8.9) 4.3 (0-9.8)

Data is reported as median (iqr) unless otherwise indicated.
a measured during first 24 hours of icu stay.
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abstract

objectives To assess whether near-infrared cerebral tissue oxygen
saturation, measured with the FORESIGHT cerebral oximeter (CAS Medical
Systems, Branford, CT, usa) predicts pediatric intensive care unit length of
stay, duration of invasive mechanical ventilation, and mortality in critically ill
children after pediatric cardiac surgery.

design Single-center prospective, observational study.

setting Twelve-bed pediatric intensive care unit of a tertiary academic
hospital.

patients Critically ill children and infants with congenital heart disease,
younger than 12 years old, admitted to the pediatric intensive care unit
between October 2012 and November 2015. Children were monitored with the
FORESIGHT cerebral oximeter from pediatric intensive care unit admission
until they were weaned off mechanical ventilation. Clinicians were blinded to
cerebral tissue oxygen saturation data.

measurements and main results Primary outcome was the predictive
value of the first 24 hours of postoperative cerebral tissue oxygen saturation
for duration of pediatric intensive care unit stay (median [95% confidence
interval (ci)], 4 days [3-8 d]) and duration of mechanical ventilation (median
[95% ci], 111.3 hours (69.3-190.4 hr]). We calculated predictors on the first 24

hours of cerebral tissue oxygen saturation monitoring. The association of each
individual cerebral tissue oxygen saturation predictor and of a combination
of predictors were assessed using univariable and multivariable bootstrap
analyses, adjusting for age, weight, gender, Pediatric Index of Mortality 2, Risk
Adjustment in Congenital Heart Surgery 1, cyanotic heart defect, and time
prior to cerebral tissue oxygen saturation monitoring. The most important risk
factors associated with worst outcomes were an increased standard deviation
of a smoothed cerebral tissue oxygen saturation signal and an elevated cerebral
tissue oxygen saturation desaturation score.

conclusions Increased standard deviation of a smoothed cerebral tissue
oxygen saturation signal and increased depth and duration of desaturation
below the 50% saturation threshold were associated with longer pediatric
intensive care unit and hospital stays and with longer duration of mechanical
ventilation after pediatric cardiac surgery.
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5.1 introduction

Although the outcome of children with congenital heart disease undergoing
cardiac surgery has improved over the past years, significant morbidity and
mortality still exist [1–4]. Inadequate tissue perfusion and oxygenation are
often associated with poor prognosis [5]. To monitor this balance between
tissue oxygen delivery and consumption, techniques such as central or mixed
venous oxygen saturation, jugular or superior vena cava saturations, or
arterial saturation can be used [6]. Because many of these techniques require
invasive blood sampling, they are not suited for continuous monitoring; hence,
hemodynamic instability or critical events are possibly missed.

Near-infrared spectroscopy (nirs) has been proposed as a technique
to monitor cerebral tissue oxygen saturation (SctO2) noninvasively and
continuously. nirs projects near-infrared light into the brain using disposable
sensors placed on the patient’s forehead. From the transmitted and reflected
light, nirs-based cerebral oximeters calculate the levels of cerebral tissue
oxygen. Several studies have reported the potential of nirs oximetry to improve
patient care during cardiac surgery. In a prospective study, Murkin et al
[7] randomized coronary artery bypass patients to an active SctO2 display
and treatment intervention protocol or to blinded SctO2 monitoring. They
have shown that monitoring SctO2 avoids profound cerebral desaturation
and is associated with a significantly lower frequency of organ dysfunction.
In children undergoing surgery for congenital heart disease, low cerebral
saturation measured using nirs cerebral oximetry has been shown to be
associated with worse (neurodevelopmental) outcomes [8–10].

However, the usefulness of nirs oximetry remains unclear in pediatric
postoperative care. Only a limited number of retrospective studies have
investigated its association with outcomes in this setting. Spaeder et al [11]
showed that a reduced postoperative SctO2 variability in neonatal survivors of
congenital heart disease surgery is associated with poor neurodevelopmental
outcomes. In a study by Phelps et al [12], low regional cerebral oxygen
saturation by nirs in the first 48 hours after the Norwood procedure was
associated with adverse outcome. Vida et al [13] reported that a postoperative
SctO2 desaturation score below 50% was associated with major postoperative
morbidities. Whether these findings apply to patients with a cyanotic heart
defect who are likely to have lower SctO2 during their stay remains currently
unknown. Hence, despite its increasing acceptance, high uncertainty remains
in the use of nirs oximetry for critical care decision-making [14].

We hypothesized that nirs-based cerebral oximetry in the postoperative
care of infants and children after cardiac surgery is predictive for adverse
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acute outcomes, such as prolonged pediatric intensive care unit (picu) stay,
prolonged duration of mechanical ventilation, and mortality. The interaction
between cyanotic heart defect and SctO2 was analyzed separately.

5.2 materials and methods

This prospective blinded observational study was performed between
October 2012 and November 2015, in the picu of the Leuven University
Hospitals, Leuven, Belgium. The Institutional Review Board approved the
enrollment and clinical data collection protocol, including a waiver of parental
consent for study participation. The study is registered at ClinicalTrials.gov
(NCT01706497).

5.2.1 Study population

Children after cardiac surgery, younger than 12 years old, with an arterial
catheter in place, mechanically ventilated upon picu admission or intubated
after admission, and expected to stay at least 24 hours in the picu, were eligible
for the study. Patients were excluded if they had actual or potential brain
damage, such as patients with traumatic brain injury, brain tumors, or patients
after cardiopulmonary resuscitation. Patients were also excluded if they had a
condition or a wound that prohibited the placement of the forehead sensors.

The following patient characteristics were prospectively collected: age,
weight, gender, the Pediatric Index of Mortality (pim) 2 score [15], cyanotic
heart defect pre and post surgery, hemoglobin levels, arterial oxygen
saturation (SaO2) and central venous oxygen saturation (SvO2) measured using
intermittent blood sampling, and treatment with extra corporal membrane
oxygenation (ecmo). Data from surgery were retrieved from hospital records
and included univentricular circulation, cardiopulmonary bypass time, aortic
clamp time, and deep hypothermic circulatory therapy. Risk Adjustment in
Congenital Heart Surgery (rachs)-1 score was calculated for all patients [16].
One patient had cerebral nirs monitoring after implantation of a Levitronix
CentriMag Left Ventricular Assist Device (Levitronix LLC, Waltham, ma),
which we attributed a score of 6.

5.2.2 Cerebral nirs monitoring

Cerebral tissue oxygen saturation was measured continuously with nirs,
using the FORESIGHT cerebral oximeter (CAS Medical Systems, Branford,
CT). All eligible patients were monitored with bilateral sensors applied to
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the frontotemporal area, from picu admission until they were weaned off
mechanical ventilation. Patients are generally admitted to the picu intubated
and progress quickly toward extubation in the first 2–12 hours following
admission, provided that no major hemodynamic instabilities are still present.
The monitor screens were blinded to the bedside clinicians with a sealed
screen cover (Appendix, Figure 5.A.1), and monitoring data were stored with
a minute-by-minute time resolution in the Patient Data Management System
(MetaVision; iMD-Soft, Needham, ma). Clinicians did not have access to the
nirs data in order not to influence the independent predictive value of the
signal.

5.2.3 Endpoints

The primary endpoint was the predictive performance of nirs cerebral
oximetry to predict the picu length of stay (los [d]). Secondary endpoints
were predictive performances of nirs cerebral oximetry to predict hospital
los, duration of invasive mechanical ventilation (hr), hospital mortality, and
mortality at 90 days after admission to the picu. Information on vital status
at 90 days was obtained from the hospital information system. To account for
death as a competing risk, duration of picu and hospital stay and duration of
mechanical ventilation were penalized in nonsurvivors to maximum duration
plus 1 day or plus 1 hour, respectively. Continuous outcomes were log
transformed because their distributions were positively skewed which resulted
in heteroscedasticity in the residuals plot. For logistic regression analysis,
the outcome variables were transformed into binary outcomes using the 75

th

percentile as arbitrary cutoff. This way, prolonged picu stay was defined as
longer than 8 days, prolonged hospital stay as longer than 21 days, and
prolonged duration of mechanical ventilation as longer than 190 hours.

5.2.4 SctO2 predictors

The minute-by-minute SctO2 data were preprocessed as follows: first, the
signal from the left and right electrodes was averaged; second, SctO2 values
below 20% were considered as artifacts and removed prior to analysis; third,
single missing values were imputed using linear interpolation. For each patient,
the following summary statistics of the preprocessed minute-by-minute SctO2

were calculated and used as predictors: mean, linear trend (slope of a fitted
trend line), standard deviation (sd) of the signal, and standard deviation
of a smoothed signal (SD-s) created by taking the median of a rolling 20-
sample window of the initial signal (Figure 5.1). Additionally, we calculated the
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variability index defined by Spaeder et al [11], using the root mean of successive
squared differences (rmssd) of minute-by-minute nirs cerebral SctO2. Finally,
we calculated the desaturation score introduced by Slater et al [17] as the area
under the curve for commonly investigated saturation thresholds below 50%
and 60% [17–21], for patient-specific saturation thresholds below the 25

th and
50

th percentiles, and for saturations thresholds above 70% and 80%. We also
calculated the time the saturation was below or above these thresholds. We
used both percentage of area and percentage of time to account for the variation
of duration in the first 24 hours of monitoring between patients.

Figure 5.1 Illustration of SD-s
Example of (A) 24-hour standard deviation of SctO2 (sd) and (B) standard deviation of a
smoothed SctO2 signal (SD-s), created by taking the median of a rolling 20-sample window
of the initial signal. (C) Example of the creation of a 5-sample smoothed signal, created by
taking the median of a rolling 5-sample window of the initial signal.
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5.2.5 Association between SctO2 predictors and outcomes

Figure 5.2 describes the steps undertaken to analyze the associations between
the SctO2 predictors and outcomes.

Figure 5.2 Scheme of analysis.
(A) Selection of significant predictors through univariable analysis. (B) For continuous
outcomes, multivariable analysis were corrected for age, gender, weight, cyanotic heart defect,
pim2 score, rachs-1 score, and time prior to SctO2 monitoring. For binary outcome,
multivariable analysis were corrected for age and pim2 score.

First, univariable linear regression was used to investigate the association
of each SctO2-derived predictor separately, with picu and hospital los, and
with duration of invasive mechanical ventilation (Figure 5.2A). We used a
bootstrap approach (5000 bootstraps) to create cis and evaluate the stability
of each model [22]. The SctO2 predictors that were found to be independently
and robustly associated with worse outcome were combined in a multivariable-
adjusted bootstrap linear regression to assess their combined contribution for
each outcome (Figure 5.2B). In the multivariable linear regression, models
were adjusted for the time interval between admission and start of nirs

monitoring and for duration of mechanical ventilation prior to the start of
nirs monitoring, respectively. Models were additionally adjusted for age,
weight, gender, postoperative cyanotic versus noncyanotic heart defect, pim2

probability of death [15], and rachs-1 score. As patients with a cyanotic
heart defect post surgery are likely to have lower SctO2 during their stay
and to have less favorable outcomes, interaction terms were included in the
multivariable model to understand how the SctO2 signal is affected by the
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cyanotic cardiopathy. Finally, receiver operating characteristic (roc) curves (and
area under the receiver operating characteristic curve (auroc)) were used to
assess the ability of the individual and combined predictors to discriminate the
prolonged clinical outcomes.

Second, univariable (Figure 5.2A) and multivariable (Figure 5.2B) logistic
regression was used to investigate the association of each independent SctO2-
derived predictor with hospital and 90-day mortality. The low mortality
prevalence precluded the use of the bootstrap approach and the adjustment for
the complete list of aforementioned confounders and interaction terms. Instead,
models were only adjusted for age and the pim2 probability of death, which are
strong predictors of adverse outcomes [15].

5.2.6 Statistical analysis

Data are presented as means and sds, medians and interquartile ranges
(iqrs), and numbers and proportions, where appropriate. Differences between
perioperative characteristics, oxygen saturation signals, and outcomes of
patients with and without cyanotic heart defect were compared with analysis of
variance for continuous variables and Fisher exact test for categorical variables.
Statistical significance was set at P-value of less than 0.05. All analyses were
performed using Python version 2.7.13 (Python Software Foundation, http:

//www.python.org), Scipy version 0.18.1 (SciPy.org).

5.3 results

5.3.1 Study population

One hundred seventy-seven patients were included in the study. Demographics
data, perioperative risk factors, and outcomes are presented in Table 5.1.
Median (iqr) age at picu admission was 4 months (1-14 mo). Median (iqr)
weight upon picu admission was 5.2 kg (3.8-8.0 kg). Overall, 107 (60.5%) were
male, 45 (25.4%) had a univentricular physiology, 11 (6.2%) underwent deep
hypothermic circulatory arrest, 114 (64.4%) had a cyanotic heart defect pre
surgery, 70 (39.5%) had a cyanotic heart defect post surgery, and 8 (4.5%) were
treated with ecmo during their stay. Median cardiopulmonary bypass duration
was 84.5 minutes (56.3-113.8 min). Median aortic clamp time was 54.5 minutes
(33.0-76.8 min). Median (iqr) picu and hospital los were 4 days (3-8 d) and 10

days (6-21 d), respectively. Median (iqr) duration of mechanical ventilation was
111.3 hours (69.3-190.4 hr). Hospital and 90-day mortality were 5.1%. Median
(iqr) duration of nirs monitoring during the first 24 hours was 21.4 hours (9.3-

http://www.python.org
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24 hr), with a median (iqr) delay between picu admission and start of nirs

monitoring of 1.1 hours (0.5-3.8 hr). The median (iqr) delay between start of
mechanical ventilation and start of nirs monitoring was 0.5 hour (0.1-2.1 hr).

During the first 24 hours of monitoring, mean (sd) hemoglobin was 11.4 (1.6)
g/dL. Mean (sd) SaO2, SvO2, and SctO2 were 93% (9%), 58% (18%), and 70%
(8%), respectively. Patients with a postoperative cyanotic heart defect had more
often a univentricular physiology (p < 0.0001), significantly higher rachs-1
score (p = 0.0002), higher hemoglobin levels (p = 0.0001), lower SaO2 (p <
0.0001), lower SctO2 (p < 0.0001), longer picu (p = 0.002) and hospital stays
(p < 0.0001), longer duration of mechanical ventilation (p = 0.002), and higher
hospital mortality (p = 0.03) compared to patients with acyanotic heart lesions
(Table 5.1).

5.3.2 Association between SctO2 predictors and picu los, hospital los and duration
of mechanical ventilation

Univariately, the SctO2 mean (p = 0.0003), the sd (p < 0.0001), the SD-s (p <
0.0001), the rmssd (p = 0.03), the percentage of time below 50% (p < 0.0001)
and 60% (p < 0.0001), above 70% (p = 0.02), and below the patient’s median
(p = 0.002), and the desaturation score below 50% (p < 0.0001), 60% (p <
0.0001), and above 70% (p = 0.03) were associated with picu los (Appendix,
Table 5.A.1). To reduce collinearity in the multivariable analysis, the significant
predictors least associated with los (sd, and desaturation score and percentage
of time below 60%, above 70%, and below the patient’s median) were removed
from further analysis.

Both the SD-s and the desaturation score below 50% remained associated
with adverse clinical outcomes when considered individually (Appendix, Table
5.A.2) and combined (Table 5.2) in a multivariable analysis corrected for age,
weight, gender, pim2, rachs-1 score, post-surgery cyanotic heart defect, and
time+ prior to nirs monitoring. The interaction analysis (Table 5.3) revealed
that cyanotic cardiopathy influenced the association between SctO2 predictors
and outcomes. In patients with acyanotic heart defect, both the desaturation
score and the SD-s contributed to the adverse outcome, whereas in patients
with a cyanotic heart defect, it was mainly the SD-s that contributes to the
adverse outcome.

In a roc curve analysis, the SD-s was more discriminant than the
desaturation score below 50% (Appendix, Figures 5.A.2 and 5.A.3). Finally, the
model combining the SD-s, the desaturation score below 50%, and corrected for
confounders had excellent discrimination for all clinical outcomes (Figure 5.3)
(auroc [95% ci], 0.94 [0.94-0.94] for prolonged picu stay; auroc 0.93 [0.93-0.93]
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Table 5.1 Baseline Characteristics and Outcomes
Characteristics All Cyanotic heart

defect
Acyanotic heart
defect

P-value

n 177 70 107 n.a.

Demographics

Age, mo, median (iqr) 4 (1-14) 4.5 (1-11) 4 (1.5-17) 0.15

Weight, kg, median (iqr) 5.2 (3.8-8.0) 5.3 (3.6-7.9) 5.2 (3.8-9.3) 0.13

Male gender, n (%) 107 (60.5) 42 (60.0) 65 (60.7) 0.92

pim2 probability of death,
median (iqr)

0.11 (0.04-0.24) 0.21 (0.11-0.35) 0.05 (0.03-0.15) <0.0001

Intraoperative

Cyanotic heart defect before
surgery, n (%)

114 (64.4) 70 (100.0) 44 (41.1) <0.0001

rachs-1 score, n (%) 0.0002

1 11 (6.2) 0 (0.0) 11 (10.3)

2 73 (41.2) 26 (37.1) 47 (43.9)

3 59 (33.3) 25 (35.7) 34 (31.8)

4 20 (11.3) 8 (11.4) 12 (11.2)

5 1 (0.6) 0 (0.0) 1 (1.0)

6 13 (7.3) 11 (15.7) 2 (1.8)

Univentricular physiology, n (%) 45 (25.4) 36 (51.4) 9 (8.4) <0.0001

Cardiopulmonary bypass timeb,
min, median (iqr)

84.5 (56.3-113.8) 90 (58-132.5) 77 (55-110) 0.14

Aortic clamp durationb, min,
median (iqr)

54.5 (33-76.8) 58 (0-74) 53 (37.5-77) 0.09

Deep hypothermic circulatory
arrestc, n (%)

11 (6.2) 6 (8.6) 5 (4.7) 0.34

Postoperative

Cyanotic heart defect post
surgery, n (%)

70 (39.5) 70 (100.0) 0 (0.0) n.a

ecmo during picu stay, n (%) 8 (4.5) 6 (8.6) 2 (1.9) 0.06

Hemoglobined, g/dL, mean (sd) 11.4 (1.6) 11.9 (1.7) 10.9 (1.5) 0.0001

Arterial oxygen saturationd, %,
mean (sd)

93.09 (9.0) 85.3 (9.8) 98.0 (2.8) <0.0001

SvO2
a,d, d, %, mean (sd) 58.4 (18.4) 54.0 (19.9) 63.9 (14.5) 0.28

SctO2
d, d, %, mean (sd) 70.2 (8.0) 66.1 (8.4) 73.0 (6.4) <0.0001

Duration of SctO2 monitoringd,
hr, median (iqr)

19.5 (6.7-23.4) 21.8 (12.3-23.6) 16.6 (7.0-23.0) 0.03

Outcomes

picu los, d, median (iqr) 4.0 (3.0-8.0) 6.0 (4.0-14.0) 4.0 (2.0-6.5) 0.002

Hospital los, d, median (iqr) 10.0 (6.0-21.0) 16.0 (8.0-30.5) 8.0 (6.0-13.0) <0.0001

Duration of invasive mechanical
ventilation, hr, median (iqr)

111.3 (69.3-190.4) 143.0 (92.2-338.8) 93.9 (49.9-153.6) 0.002

90-day mortality, n (%) 9 (5.1) 6 (8.6) 3 (2.8) 0.16

Hospital mortality, n (%) 9 (5.1) 7 (10.0) 2 (1.9) 0.03
n.a., not applicable.
a Measured in 18 patients.
b Available in 142 patients.
c Available in 140 patients.
d Measured during first 24 hr.
P-value is shown for comparison between patients with postoperative cyanotic versus acyanotic heart defect.
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Table 5.2 Multivariable association between cerebral tissue oxygen saturation and
continuous outcomes for all patients

All patients (n = 177) – continuous outcomes

Outcomes Coefficient R-squared P-value

SctO2 predictors picu los

SD-s 0.12 (0.12–0.12) 0.609 (0.608–0.611) 0.009 (0.008–0.010)

Desaturation score
below 50%

0.43 (0.42–0.44) 0.609 (0.608–0.611) 0.003 (0.002–0.004)

SctO2 predictors Hospital los

SD-s 0.10 (0.10–0.10) 0.599 (0.597–0.600) 0.006 (0.005–0.007)

Desaturation score
below 50%

0.30 (0.29–0.30) 0.599 (0.597–0.600) 0.01 (0.01–0.01)

SctO2 predictors Duration of
mechanical
ventilation

SD-s 0.12 (0.11–0.12) 0.594 (0.592–0.595) 0.01 (0.01–0.02)

Desaturation score
below 50%

0.41 (0.40–0.41) 0.594 (0.592–0.595) 0.006 (0.005–0.008)

Association between SctO2 and los or duration of mechanical ventilation was corrected for age, weight, gender,
pim2, rachs-1, and cyanotic heart defect and time prior to nirs monitoring.

Table 5.3 Association between cerebral tissue oxygen saturation and continuous
outcomes including interactions terms

All patients (n = 177) – continuous outcomes

Outcomes Coefficient R-squared P-value

SctO2 predictors picu los

Cyanotic –0.43 (–0.44 to –0.42) 0.640 (0.639–0.642) 0.04 (0.04–0.05)

SD-s * cyanotic 0.21 (0.21–0.21) 0.640 (0.639–0.642) 0.0003 (0.0003–0.0004)

Desaturation score
below 50% * cyanotic

–0.84 (–0.85 to –0.83) 0.640 (0.639–0.642) 0.004 (0.004–0.005)

Desaturation score
below 50% * SD-s

0.18 (0.18–0.18) 0.640 (0.639–0.642) <0.0001
(<0.0001–<0.0001)

SctO2 predictors Hospital los

Cyanotic –0.18 (–0.19 to –0.17) 0.624 (0.623–0.626) 0.26 (0.25–0.27)

SD-s * cyanotic 0.16 (0.16–0.16) 0.624 (0.623–0.626) 0.0008 (0.0006–0.0009)

Desaturation score
below 50% * cyanotic

–0.66 (–0.67 to –0.66) 0.624 (0.623–0.626) 0.006 (0.005–0.007)

Desaturation score
below 50% * SD-s

0.13 (0.13–0.14) 0.624 (0.623–0.626) 0.0002 (0.0002–0.0003)

SctO2 predictors Duration of
mechanical
ventilation

Cyanotic –0.44 (–0.45 to –0.43) 0.626 (0.625–0.627) 0.04 (0.04–0.05)

SD-s * cyanotic 0.21 (0.21–0.21) 0.626 (0.625–0.627) 0.0004 (0.0004–0.0005)

Desaturation score
below 50% * cyanotic

–0.86 (–0.87 to –0.85) 0.626 (0.625–0.627) 0.004 (0.004–0.005)

Desaturation score
below 50% * SD-s

0.18 (0.18–0.18) 0.626 (0.625–0.627) 0.0001 (0.0001–0.0002)

Association between SctO2 and los or duration of mechanical ventilation was corrected for age, weight, gender,
pim2, rachs-1, and cyanotic heart defect and time prior to nirs monitoring.
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for prolonged hospital stay; auroc 0.94 [0.94-0.94] for prolonged duration of
mechanical ventilation).

Figure 5.3 roc curves and 95% ci of the bootstrap model combining the standard
deviation of the smoothed SctO2 signal (SD-s), the desaturation score
below 50%, and corrected for confounders. (A) Prolonged picu los (los >
8 d): auroc (95% ci), 0.94 (0.94-0.94); (B) prolonged hospital los (los > 21

d): auroc (95% ci), 0.93 (0.93-0.93); (C) prolonged duration of mechanical
ventilation (duration > 190 hr): auroc (95% ci), 0.94 (0.94-0.94).

5.3.3 Association between SctO2 predictors and hospital and 90-day mortality

Univariately (Appendix, Table 5.A.3), and after correction for age and the pim2

score (Appendix, Table 5.A.4), none of the investigated SctO2 predictors were
associated with increased risk of mortality (hospital or 90-day).

5.4 discussion

In this study, SctO2 was monitored prospectively in the early postoperative
period of a large pediatric cohort after cardiac surgery. We investigated the
association between outcome and nirs cerebral oximetry predictors identified
in previous studies and several new metrics calculated from the nirs time
course. We found that an increased depth and duration of desaturation below
the 50% saturation threshold and an increased SD-s in the first 24 hours after
cardiac surgery are associated with longer picu and hospital stays and with
longer duration of mechanical ventilation, even after correction for several
confounders.

Our findings support previous studies reporting that the SctO2 desaturation
score or low nirs cerebral saturation is a predictor of adverse outcomes. Slater
et al [17] introduced this desaturation score and showed that intraoperatively,
an elevated desaturation score below 50% was associated with longer hospital
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stay. Fischer et al [8] reported that an increased intraoperative desaturation
score below 60% was associated with adverse outcome during aortic arch
surgery. Vida et al [13] reported that the postoperative desaturation score below
50% was associated with major postoperative morbidities. In another study
investigating postoperative nirs after the Norwood procedure, Phelps et al
[12] found that mean SctO2 below 56% was a risk factor for subsequent adverse
outcomes. Finally, Hansen et al [23] reported that the postoperative mean SctO2

of patients with hypoplastic left heart syndrome was lower in patients with
cardiac complications within 48 hours.

Expanding on these studies, we investigated alternative analytic approaches
of the nirs cerebral oxygen saturation time course. We found that an increased
SD-s, which is a measure of variability of the low frequency components of the
SctO2 signal, was univariately associated with worse outcomes. Interestingly,
this measure of variability remained an independent predictor in addition
to the desaturation score and was a stronger predictor of poor outcome in
patients with cyanotic heart lesions. Combining both resulted in excellent
discrimination for prolonged stay and prolonged mechanical ventilation. The
physiologic explanation for the association between an increased standard
deviation and worse clinical outcomes is unclear and should be investigated
further. It has been hypothesized that nirs oximetry could be used to assess
cerebrovascular autoregulation [11, 24]. In a recent study, Spaeder et al [11]
introduced the cerebral tissue oxygenation index variability, which is a measure
of variability of the high-frequency components of the SctO2 signal [25], as the
rmssd of averaged 1-minute cerebral tissue oxygenation index values for both
the intraoperative and first 24 hours postoperative phases of monitoring. They
found that a reduced cerebral tissue oxygenation index variability is associated
with poor neurodevelopmental outcomes in neonates after congenital heart
surgery and suggest that this reduced measure of variability might be a
surrogate for impaired cerebral autoregulation. In our study, which included
children on average older than the neonatal age and in which we have used a
different cerebral oximeter, a reduced rmssd was not significantly associated
with longer picu or hospital stays, nor with longer duration of mechanical
ventilation, after adjustment for confounders. Subsequent studies are necessary
to confirm that the SctO2 variability could be used as a surrogate of impaired
autoregulation.

Evidently, patients with post-surgery cyanotic heart lesions had a lower
mean SaO2 and increased hemoglobin levels. Our study revealed significant
differences in SctO2 between patients with cyanotic versus acyanotic heart
defect, a finding also reported in the pilot study by Tume and Arnold [26].
Notwithstanding this statistical difference, in spite of their lower SaO2, patients



142 association between cerebral oximetry and acute outcome

with cyanotic heart lesions are still able to preserve brain tissue oxygenation as
measured by nirs, within what would be considered a clinically acceptable
range. In these patients, the SD-s was a better predictor of adverse outcomes
than the desaturation score. To our knowledge, this is the first large study
investigating the interaction of cyanotic cardiopathy and SctO2. Our findings
suggest that the pediatric population with cyanotic heart defect could benefit
from different reference values of nirs cerebral oxygen saturation.

The early recognition of children at risk after surgery for congenital heart
defects could trigger interventions with the potential to improve outcome
and avoid morbidity. In this study, we have discovered two novel metrics,
the SD-s as a measure of SctO2 variability and the desaturation score below
50%, which have a robust association with outcome. Whether they provide
additional and clinically relevant information in addition to conventional
cardiovascular monitoring at the patient’s bedside could not be assessed in
this observational trial but remains an interesting hypothesis that requires
further investigation. The physiologic meaning behind the association between
an increased SctO2 variability (SD-s) and worse outcome, and whether it
represents impaired cerebrovascular autoregulation, should be examined as
well. The desaturation score below 50% might give the clinician an idea on
the cumulative burden of low cerebral perfusion in a particular child and
might be used as an early trigger to perform additional clinical, radiologic, or
electrophysiologic tests to detect neurocognitive dysfunction. Pragmatic clinical
trials can be set up to examine whether providing this new information to
clinicians improves the outcome. For instance, the benefit of additional heart
rate variability (hrv) monitoring in neonates was examined in a randomized
clinical trial, where it could be demonstrated that displaying the hrv monitor
was able to improve the outcomes of these infants, as compared to when the
monitor was blinded [27]. In addition, the cost-effective potential of nirs-based
hemodynamic management after surgery for congenital heart defects should
be addressed in future studies.

As the survival in children with congenital heart disease has improved, the
focus has shifted to morbidity. The early recognition of patients at risk for poor
outcome could trigger interventions to improve outcome because it allows the
picu staff to take early measures to stabilize the patient. As such, continuous
display of the two metrics described in this study, the SD-s as a measure
of SctO2 variability and the desaturation score below 50%, could provide
extra information to the clinician in addition to conventional cardiovascular
monitoring. However, the two metrics are currently not displayed by available
cerebral oximeters, and it remains unclear how caregivers could improve
or modify SctO2 variability. It remains unproven whether these prognostic
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markers can be used as therapeutic targets. Pragmatic clinical trials can be
set up to examine whether adding a new monitor or variable, and providing
information to clinicians, improves the outcome. For instance, hrv monitoring
has been shown to trigger earlier interventions for sepsis and improve
the outcomes in neonates. SctO2 variability (SD-s) robustly associates with
worse outcome, and we believe that the physiologic meaning behind this
variable should be examined as well, and whether, for instance, it represents
impaired cerebrovascular autoregulation. From a conceptual point of view, we
hypothesize that the desaturation score below 50% might give the clinician an
idea on the cumulative burden of low cerebral perfusion in a particular child
and might be used as a trigger for clinical, radiologic, or electrophysiologic
signs of neurocognitive dysfunction. In addition, the cost-effective potential
of nirs-based hemodynamic management after surgery for congenital heart
defects is not known.

This study has several limitations. First, due to its single-center design,
the findings highlighted in this study might not be generalizable to other
populations and therefore should be validated in adequately powered
prospective studies. Second, the typical low mortality prevalence of the
pediatric cohort precluded any robust bootstrap analysis and might have
underpowered our results related to hospital and 90-day mortality. This
might explain why our results did not show that SctO2 provides additional
prognostic value for mortality. Third, as the baseline SctO2 [28] was not
registered prior to surgery, we could not assess trend changes compared
with the patients’ baseline. Nevertheless, this increases the applicability of our
findings, as several centers might not register this cerebral oximeter baseline.
Fourth, the calculation of the SctO2 standard deviation might be affected by
the duration of cerebral oximetry monitoring which was shorter in patients
with acyanotic heart defect. Finally, the observational design of the study
prevents any conclusion on the clinical benefit of using SctO2 for postoperative
management.

This study has several strengths. First, it is prospective in design and hence
detailed in data collection. Second, it included a large patient population that
enabled to perform robust statistical analysis with correction for confounders,
most noticeably for cyanotic heart defect (except for the mortality analysis) and
for pim2. The analysis was based on bootstrapping, which also increased the
robustness and generalizability of the findings. Third, because the clinicians
were blinded to SctO2 data, treatment bias was excluded. Finally, this study is
the first of its kind to study the interaction between nirs cerebral oximetry and
cyanotic heart defect in a critical care setting.
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5.5 conclusions

Increased desaturation below 50% and increased SctO2 variability in the
early postoperative period after cardiac surgery were found to be associated
with longer picu and hospital stays and with longer duration of mechanical
ventilation, even after correction for several confounders. Furthermore, our
study highlighted the difference in cerebral oxygen saturation between patients
with cyanotic versus acyanotic heart defect. Hence, we recommend that future
studies should be adequately powered to analyze these populations separately.

As this study was observational, our findings cannot support any conclusions
regarding postoperative management of critically ill children after cardiac
surgery. Opportunities for using the desaturation score and the variability of
SctO2 to drive therapeutic interventions remain to be investigated.
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5.a appendix

Figure 5.A.1 Sealed-screen monitor.

Figure 5.A.2 roc curves and 95% ci of the bootstrap model including the standard
deviation of the smoothed SctO2 signal (SD-s).

(A) Prolonged picu los (los > 8 days): auroc (95% ci), 0.74 (0.74-0.74) (B) Prolonged
hospital los (los > 21 days): auroc (95% ci), 0.71 (0.71-0.71) , (C) Prolonged duration
of mechanical ventilation (duration > 190 hours): auroc (95% ci), 0.73 (0.73-0.73).
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Figure 5.A.3 roc curves and 95% ci of the bootstrap model including the
desaturation score below 50%.

(A) Prolonged picu los (los > 8 days): auroc (95% ci), 0.62 (0.62-0.62), (B) Prolonged
hospital los (los > 21 days): auroc (95% ci), 0.61 (0.61-0.61) , (C) Prolonged duration
of mechanical ventilation (duration > 190 hours): auroc (95% ci), 0.62 (0.62-0.62).

Table 5.A.1 Bootstrap univariable association between SctO2 predictors and icu los.
Outcomes Coefficient R-squared P-value

SctO2 predictors picu los

Mean -0.04 (-0.04 to -0.04) 0.072 (0.070-0.074) 0.0003
(0.0003-0.0004)

Trend 5.64 (5.53-5.78) 0.009 (0.009-0.009) 0.21 (0.20-0.22)

sd 0.32 (0.31-0.32) 0.129 (0.127-0.130) <0.0001
(<0.0001-<0.0001)

SD-s 0.30 (0.30-0.30) 0.131 (0.129-0.133) <0.0001
(<0.0001-<0.0001)

rmssd -0.53 (-0.54 to -0.52) 0.028 (0.027-0.029) 0.03 (0.02-0.03)

% time below 50% 4.13 (4.08-4.19) 0.105 (0.104-0.107) <0.0001
(<0.0001-<0.0001)

% time below 60% 1.56 (1.55-1.58) 0.112 (0.110-0.114) <0.0001
(<0.0001-<0.0001)

% time below
25pctl

2.91 (2.85-2.97) 0.013 (0.013-0.014) 0.13 (0.12-0.14)

% time below
50pctl

3.67 (3.64-3.71) 0.051 (0.050-0.052) 0.002 (0.002-0.003)

% time above 70% -0.48 (-0.48 to -0.47) 0.031 (0.031-0.032) 0.02 (0.02-0.02)

% time above 80% 0.19 (0.17-0.20) 0.003 (0.003-0.004) 0.44 (0.43-0.46)

% auroc below 50% 0.88 (0.88-0.89) 0.109 (0.107-0.111) <0.0001
(<0.0001-<0.0001)

% auroc below 60% 0.88 (0.88-0.89) 0.109 (0.107-0.111) <0.0001
(<0.0001-<0.0001)

% auroc below
25pctl

0.06 (0.06-0.07) 0.002 (0.002-0.002) 0.52 (0.51-0.53)

% auroc below
50pctl

-0.18 (-0.19 to -0.16) 0.002 (0.002-0.002) 0.56 (0.55-0.57)

% auroc above 70% 0.07 (0.07-0.08) 0.025 (0.024-0.026) 0.03 (0.03-0.04)

% auroc above 80% 0.005 (0.003-0.007) 0.003 (0.003-0.003) 0.49 (0.48-0.51)
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Table 5.A.2 Multivariable association between SctO2 predictors and countinuous
outcomes.

All patients (n = 177) – continuous outcomes

Outcomes Coefficient R-squared P-value

SctO2 predictors picu los

Mean -0.02 (-0.02 to -0.02) 0.564 (0.562-0.565) 0.07 (0.07-0.07)

SD-s 0.15 (0.15-0.16) 0.582 (0.581-0.583) 0.0009
(0.0008-0.0011)

rmssd -0.17 (-0.17 to -0.16) 0.555 (0.553-0.557) 0.32 (0.31-0.33)

Desaturation score
below 50%

0.52 (0.51-0.53) 0.589 (0.587-0.591) 0.0003
(0.0003-0.0004)

% time below 50% 2.18 (2.13-2.24) 0.582 (0.580-0.584) 0.002 (0.002-0.003)

SctO2 predictors Hospital los

Mean -0.02 (-0.02 to -0.02) 0.568 (0.567-0.570) 0.005 (0.005-0.006)

SD-s 0.13 (0.12-0.13) 0.578 (0.576-0.579) 0.0009
(0.0007-0.0010)

rmssd -0.01 (-0.01 to -0.01) 0.547 (0.545-0.549) 0.51 (0.50-0.53)

Desaturation score
below 50%

0.37 (0.37-0.38) 0.577 (0.575-0.578) 0.002 (0.001-0.002)

% time below 50% 1.60 (1.56-1.64) 0.572 (0.570-0.574) 0.006 (0.005-0.007)

SctO2 predictors Duration of
mechanical
ventilation

Mean -0.01 (-0.01 to -0.01) 0.549 (0.547-0.550) 0.12 (0.11-0.13)

SD-s 0.15 (0.14-0.15) 0.568 (0.566-0.570) 0.002 (0.002-0.002)

rmssd -0.12 (-0.13 to -0.11) 0.541 (0.539-0.544) 0.42 (0.40-0.43)

Desaturation score
below 50%

0.49 (0.49-0.50) 0.573 (0.571-0.575) 0.0009
(0.0007-0.0011)

% time below 50% 2.05 (2.00-2.10) 0.567 (0.565-0.569) 0.005 (0.004-0.006)
Association between SctO2 and los or duration of mechanical ventilation was corrected for age, weight, gender, pim2
score, rachs-1 score, cyanotic heart defect and time prior to nirs monitoring.
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Table 5.A.3 Univariable association between SctO2 predictors and 90-day mortality.
Outcomes Odds-ratio auroc P-value

SctO2 predictors 90-day
mortality

Mean 0.99 (0.89-1.09) 0.52 0.77

Trend 4e30 (1e−130-1e191) 0.67 0.71

sd 1.27 (0.72-2.22) 0.57 0.41

SD-s 1.67 (0.96-2.90) 0.74 0.07

rmssd 1.01 (0.53-1.92) 0.33 0.97

% time below 50% 0.73 (2e−5-22705) 0.51 0.95

% time below 60% 1.56 (0.06-40.18) 0.46 0.79

% time below
25pctl

10.97 (5e−8-2e9) 0.54 0.81

% time below
50pctl

5e6 (0.00-6e15) 0.69 0.15

% time above 70% 1.83 (0.25-13.37) 0.53 0.55

% time above 80% 0.001 (1e−11-60953) 0.48 0.45

% auc below 50% 0.67 (0.01-32.29) 0.49 0.84

% auc below 60% 0.99 (0.47-2.07) 0.48 0.98

% auc below 25pctl 8e9 (0-10e200) 0.55 0.99

% auc below 50pctl 1.65 (0.05-49.61) 0.52 0.77

% aucabove 70% 0.73 (0.49-1.09) 0.68 0.12

% auc above 80% 0.004 (3e−10-60533) 0.52 0.52

Table 5.A.4 Multivariable association between SctO2 predictors and mortality.
All patients (n = 177) – categorical outcomes

Outcomes Odds-ratio auroc P-value

SctO2 predictors Hospital
mortality

Mean 1.04 (0.94-1.15) 0.75 0.45

SD-s 1.28 (0.73-2.24) 0.86 0.40

rmssd 0.43 (0.02-12.21) 0.81 0.62

Desaturation score
below 50%

0.12 (0.00-26.56) 0.85 0.44

% time below 50% 0.00 (0.00-24402) 0.83 0.47

SctO2 predictors 90-day
mortality

Mean 1.03 (0.93-1.15) 0.80 0.54

SD-s 1.04 (0.57-1.88) 0.80 0.91

rmssd 0.10 (0.00-4.73) 0.80 0.24

Desaturation score
below 50%

0.13 (0.00-26.88) 0.81 0.46

% time below 50% 0.00 (0.00-28159) 0.79 0.49
Association between SctO2 and mortality was corrected for age and pim2 score.
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abstract

purpose : Cerebral oximetry by near-infrared spectroscopy (nirs) is used
frequently in critically ill children but guidelines on its use for decision
making in the pediatric intensive care unit (picu) are lacking. We investigated
cerebral nirs oximetry in its ability to predict severe acute kidney injury (aki)
after pediatric cardiac surgery and assessed its additional predictive value to
routinely collected data.

methods : Prospective blinded observational study performed between
October 2012 and November 2015 in the picu, University Hospitals Leuven,
Belgium. Critically ill children with congenital heart disease, younger than 12

years old, were monitored with cerebral nirs oximetry from picu admission
until they were successfully weaned off mechanical ventilation. The primary
outcome was prediction of severe aki 6 hours before its occurrence during
the first week of intensive care. nirs-derived predictors and routinely collected
clinical data were compared and combined to assess added predictive value.

results : Of the 156 children included in the analysis, 55 (35%) developed
severe aki. The most discriminant nirs-derived predictor was nirs variability
(area under the receiver operating characteristic curve (auroc) 0.68;
95%confidence interval (ci), 0.67-0.68), but was outperformed by a clinical
model including baseline serum creatinine, cyanotic cardiopathy pre-surgery,
blood pressure and heart frequency (auroc 0.75; 95%ci 0.75-0.75, P<0.001).
Combining clinical and nirs information improved model performance (auroc

0.79; 95%ci, 0.79-0.80; P<0.001).

conclusion : After pediatric cardiac surgery, nirs variability combined
with clinical information improved discriminability for aki. Future studies are
required to identify whether supplementary, timely clinical interventions at the
bedside, based on nirs variability analysis, could improve outcome.
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6.1 introduction

nirs has gained popularity in the picu, as it allows for continuous and
non-invasive assessment of tissue oxygenation at the bedside [1, 2]. The
technology is most frequently used on the patient forehead but can also be
used on somatic sites to measure organ-specific tissue oxygen saturation [3, 4].
nirs-detected cerebral hypoxia has been in relation to venous oximetry and
anaerobic metabolism [3, 5, 6]. Therefore, cerebral nirs monitoring is used as
a hemodynamic monitor for early recognition of an inadequate global oxygen
supply/demand relationship, and to adapt interventions to minimize the risk
of secondary organ dysfunction.

Evidence on the usefulness of nirs monitoring both for prognosis and
to guide management decisions in pediatrics is limited, and has focused
on cardiac surgery settings. A single study [7] suggests that nirs-guided
early detection of decreased tissue perfusion and oxygenation could allow
initiation of prompt therapies to avoid organ damage and hence improve
patient outcome. However, there is currently no consensus on which critical
nirs thresholds could guide patient care, trigger interventions, or be used
for prognostication [8–10]. Given the relatively high cost of the monitoring
sensors, it is crucial to determine specific settings in which nirs monitoring
could improve patient care.

One such setting, to which impaired global perfusion contributes
significantly, is aki. aki is a very common complication after pediatric cardiac
surgery, affecting 40% of these children [11, 12], and is associated with adverse
outcomes, including prolonged duration of intensive care unit (icu) and
hospital stay and increased mortality [11–15]. A prior study has shown that
decreased renal nirs oxygen saturation was predictive of aki after adult cardiac
surgery [16]. Whether the more common cerebral site of nirs monitoring is
equally predictive of aki is unclear.

In this study, we hypothesized that cerebral nirs oximetry could adequately
discriminate the risk of severe aki in children following cardiac surgery and
could be combined with routinely collected patient information to improve
predictive performance.

6.2 methods

6.2.1 Study design

This prospective blinded observational study was performed between October
2012 and November 2015, in the picu of the Leuven University Hospitals,



158 prediction of aki with near-infrared spectroscopy

Leuven, Belgium [17]. Patient enrollment and clinical data collection protocol,
including a waiver of parental consent for study participation, were approved
by the Institutional Review Board. The study is registered at Clinical Trials.gov
(Nct01706497).

6.2.2 Study population

Children after cardiac surgery, younger than 12 years old, with an arterial
line in place, mechanically ventilated upon picu admission or intubated after
admission, and expected to stay at least 24 hours in the picu, were eligible
for the study. Patients were excluded if they had actual or potential brain
damage, such as traumatic brain injury, or after cardiopulmonary resuscitation.
Patients were also excluded if they had a condition or a wound that prohibited
the placement of the forehead nirs sensors. In addition, we excluded patients
who developed aki within 6 hours after admission and patients in whom nirs

monitoring was initiated after aki onset.

6.2.3 Near-infrared spectroscopy monitoring

Cerebral tissue oxygen saturation was continuously measured with nirs, using
the FORESIGHT cerebral oximeter (CAS Medical Systems Inc., Branford, ct,
usa). All eligible patients were monitored with bilateral sensors applied to
the frontotemporal area, from picu admission until they were weaned off
mechanical ventilation. The monitor screens were blinded to the bedside
clinicians with a sealed screen-cover in order not to influence the independent
predictive value of the signal.

6.2.4 Prediction of acute kidney injury

The primary outcome was prediction of severe aki 6 hours before its occurrence
during the first week of icu stay. Severe aki was defined as serum creatinine
(serum creatinine (sc)) level ≥ 2 times the baseline level, or urine output (urine
output (uo)) < 0.5 ml/kg/hour for ≥ 12 hours, or provision of dialysis (aki

stage 2 or 3) according to the Kidney Disease: Improving Global Outcome
criteria [18]. Baseline sc was determined as the lowest level in the 3 months
before admission. At least 1 daily sc measurement or at least 12 hours of uo in
the first 7 days were required to assess aki. The maximum aki stage was used
when the sc and uo criteria resulted in different stages.

Prediction of severe aki was performed, first using the signal from the
cerebral nirs oximeter (nirs) signal), second using routinely collected clinical
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data, and third by combining nirs and clinical information. Data were retrieved
during the observation window (Appendix, Figure 6.A.1a-b), which lasted from
admission until prediction. For patients with aki, the observation window
lasted until 6 hours before aki onset. To reduce possible bias from monitoring
duration, for patients without aki, the observation window was determined by
fitting a similar distribution of observation windows than for the patients with
aki (Appendix, Figure 6.A.1c).

6.2.4.1 nirs model

A nirs model was developed using the nirs signal after preprocessing
[17] and transformation to relevant predictors, including value-based metrics,
variability metrics, frequency components, time and dose below various
hypoxic thresholds (50%, 60%, patient-specific 25

th percentile) [19, 20] and
above various hyperoxic thresholds (80%, patient-specific 75

th percentile). The
complete list of investigated predictors is reported in Table 6.A.1 (Appendix).
It is important to notice that up-to-date cerebral oximeters only display value-
based metrics and the dose below a user-defined threshold.

6.2.4.2 Clinical model

A clinical prediction model was developed based on patient demographics and
prospectively collected clinical information recorded during surgery, at icu

admission, and during icu stay (Table 6.1). Monitoring information included
minute-by-minute heart rate and systolic blood pressure, daily lactate levels,
hemoglobin levels, arterial SaO2 and central venous SvO2 oxygen saturation
measured using intermittent blood sampling, and treatment with extra corporal
membrane oxygenation (ecmo). The median values and variability metrics
(for minute-by-minute data) of monitoring information were used as clinical
predictors.

6.2.4.3 Combining nirs and clinical models

Predictors included in the nirs model and in the clinical model were combined
to assess the added predictive value of the nirs signal as compared to routinely
collected data.

6.2.5 Statistical analysis

Data are presented as means and standard deviation (sd), medians and
interquartile range (iqr), and numbers and proportions, where appropriate.
Differences between perioperative characteristics, nirs signal, and outcomes
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of patients with and without aki were compared with one way ANOVA for
continuous variables and Fisher exact test for categorical variables. Statistical
significance was set at P < 0.05. All analyses were performed using Python
version 2.7.13 (Python Software Foundation, http://www.python.org), Scipy
version 0.18.1 (SciPy.org).

Reporting of the study was performed using the strobe guidelines [21].

6.2.5.1 Prediction model development

Prediction models were developed using logistic regression. For each model,
predictors with a univariable P < 0.05 were included in the models and
backwards feature selection was used to identify the smallest and most accurate
model, in order to reduce overfitting and optimize model generalizability.
Model performance and stability were internally validated using bootstrapping
(500 bootstrap replicas) [22].

6.2.5.2 Diagnostic accuracy assessment

To assess model performance, we reported discrimination, calibration and
clinical usefulness [23]. Discrimination refers to how well the predictions allows
to discriminate between patients with and without aki. Discrimination was
evaluated with the receiver operating characteristic (roc) curve and the area
under the roc curve (auroc). Calibration refers to the agreement between
the observed frequency of aki in the population and the model predictions.
Calibration was assessed using calibration belts together with the distribution
of patient numbers [24]. A statistically significant difference from perfect
calibration is reported by a calibration test P-value < 0.05 [24]. Finally, the
clinical usefulness of the model was assessed by the difference between the
expected benefit and the expected harm associated with model classification
of aki. Clinical usefulness was visualized using decision curves and reported
using ranges above treat-all and treat-none curves [25, 26].

6.3 results

6.3.1 Study population

A total of 177 patients met inclusion criteria and were monitored with cerebral
nirs oximetry. 21 patients were excluded of whom 4 had aki within 6 hours
after admission and 16 were monitored with nirs after aki onset (Figure 6.1).
Additionally, nirs monitoring was initiated later than 72 hours in 1 patient,

http://www.python.org
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Figure 6.1 Flow diagram

which prevented the fit of prediction time for this patient. The remaining 156

patients were included in the analysis.

Demographics and outcomes of study participants are reported in Table
6.1. Fifty-five patients (35.3 %) developed severe aki. Compared with patients
without aki, patients with aki had a higher picu and 90-day mortality risk
(P=0.02 and P=0.05, respectively), longer picu and hospital stay (P<0.001) and
longer duration of mechanical ventilation (P<0.001).

6.3.2 Performance of nirs model

Compared to patients without aki, patients with aki had a lower maximum
value of nirs signal (Appendix Table 6.A.1, P=0.01), lower mean (P=0.007),
lower root-mean square of successive differences (root mean of successive
squared differences (rmssd)) 10 (P<0.001), and increased time and dose below
50% (P=0.01, P=0.03, respectively) and 60% (P=0.001). These predictors were
calculated 6 hours prior to aki diagnosis. However, given the low incidence of
saturations below 50% and 60%, the robustness of these predictors could not
be assessed with the bootstrapping approach.

Performance of each significant nirs predictor for severe aki is reported
in Figure 6.2 and Table 6.A.2 (Appendix). Overall, the rmssd, a measure of
nirs variability, had higher discriminability than the mean and the maximum
values of nirs (auroc 0.68; 95%ci, 0.67-0.68, P<0.001), had wider (25-92%) and
higher ranges of clinical benefit, and was well calibrated (P=0.6). Combining
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the nirs predictors slightly improved discriminability (Appendix, Figure 6.A.2
and Table 6.A.3, auroc 0.69; 95%ci 0.69-0.70, P<0.001). However, only rmssd

remained in the nirs model after backwards feature selection.
Table 6.1 Patient characteristics

All patients (n=156) Patients with aki

(n=55)
Patients without aki

(n=101)
P-value

Demographics

Age, month 4.0 (1.8-14.3) 2.0 (0.0-8.0) 6.0 (3.0-16.0) 0.35

Weight, kg 5.6 (3.8-8.7) 4.1 (3.3-7.4) 6.5 (4.5-8.8) 0.20

Height, cm 61.0 (53.0-74.5) 54.0 (50.0-68.0) 63.0 (57.0-76.0) 0.12

Male gender, No. (%) 97 (62.2) 37 (67.3) 60 (59.4) 0.33

Surgery data

Univentricular
circulation, No. (%)

40 (25.6) 15 (27.3) 25 (24.8) 0.85

Cardiopulmonary
bypass, No. (%)

140 (89.7) 51 (92.7) 89 (88.1) 0.42

dhca, No. (%) 8 (5.1) 5 (9.1) 3 (3.0) 0.09

Cyanotic heart defect
pre-surgery, No. (%)

99 (63.5) 45 (81.8) 54 (53.5) 0.0004

Cardiopulmonary
bypass duration, min

77.0 (48.5-105.0) 88.0 (55.5-111.5) 75.0 (45.0-98.0) 0.01

Aortic clamp duration,
min

53.2 (36.0-72.3) 58.0 (45.5-78.5) 53.2 (34.0-68.0) 0.04

Minimum temperature,
°C

34.6 (33.5-35.3) 34.4 (33.5-35.4) 34.6 (33.5-35.3) 0.14

Maximum lactate,
mmol/L

2.2 (1.5-2.5) 2.5 (1.6-3.5) 2.0 (1.5-2.5) 0.0008

icu admission data

Pediatric Index of
Mortality (pim)2
probability of death, %

10.3 (3.5-22.0) 18.1 (5.1-33.2) 7.2 (3.2-15.5) <0.0001

Baseline serum
creatinine, mg/dL

0.31 (0.25-0.42) 0.39 (0.29-0.51) 0.29 (0.24-0.37) <0.0001

Elective admission, No.
(%)

138 (88.5) 46 (83.6) 92 (91.1) 0.19

Cyanotic heart defect
post-surgery, No. (%)

58 (37.2) 22 (40.0) 36 (35.6) 0.60

Risk Adjustment in
Congenital Heart
Surgery (rachs)-1
score, No. (%)

0.01

1 9 (5.8) 0 (0.0) 9 (8.9)

2 67 (42.9) 19 (34.5) 48 (47.5)

3 52 (33.3) 21 (38.2) 31 (30.7)

4 19 (12.2) 12 (21.8) 7 (6.9)

5 0 (0.0) 0 (0.0) 0

6 9 (5.8) 3 (5.5) 6 (5.9)

ecmo upon admission,
No. (%)

6 (3.8) 5 (9.1) 1 (1.0) 0.02

Monitoring data
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ecmo during picu stay,
No. (%)

7 (4.5) 5 (9.1) 2 (2.0) 0.09

Heart frequency,
beat/min

132 (118-145) 142 (131-150) 129 (116-139) <0.0001

rmssd of heart
frequency, beat/min

2.61 (1.88-4.22) 2.69 (1.93-5.36) 2.60 (1.85-4.06) 0.10

Hemoglobine, g/dL 11.5 (10.2-12.4) 11.5 (10.4-12.6) 11.5 (10.2-12.3) 0.44

Systolic blood pressure,
mm Hg

81.00 (70.75-90.00) 72.00 (60.50-84.00) 85.00 (75.00-93.00) <0.0001

rmssd of systolic blood
pressure, mm Hg

3.30 (2.41-4.46) 3.07 (2.04-3.74) 3.52 (2.57-4.80) 0.005

Lactate, mmol/L 1.2 (0.9-1.8) 1.6 (1.0-3.0) 1.1 (0.9-1.5) <0.0001

Maximum lactate,
mmol/L

2.1 (1.5-3.1) 3.0 (1.8-3.8) 1.8 (1.4-2.6) <0.0001

Arterial oxygen
saturation, %, mean sd

93.6 (8.7) 93.7 (8.7) 93.6 (8.7) 0.93

Outcomes

picu los, days 4.0 (3.0-7.0) 7.0 (4.0-16.5) 3.0 (2.0-5.0) 0.0004

Hospital los, days 9.0 (6.0-18.0) 13.0 (8.0-31.5) 8.0 (6.0-14.0) 0.0003

Duration of mechanical
ventilation, hours

97.7 (67.7-167.0) 164.2 (97.7-393.3) 74.7 (48.1-120.9) 0.0004

picu Mortality, No. (%) 6 (3.8) 5 (9.1) 1 (1.0) 0.02

90-day mortality, No.
(%)

5 (3.2) 4 (7.3) 1 (1.0) 0.05

Data are summarized using median (iqr) except where stated otherwise. P-value is shown for
comparison between patients with and without aki.

6.3.3 Performance of clinical model

Table 6.1 reports univariable differences in clinical variables between patients
with and without aki. Compared to patients without aki, patients with aki

had a longer duration of cardiopulmonary bypass (P=0.01) and of aortic clamp
(P=0.04), had higher maximum lactate levels during surgery (P<0.001), higher
baseline sc (P<0.001), higher Risk Adjustment for Congenital Heart Surgery
Score version 1 (rachs-1) (P=0.01) and higher pediatric index of mortality
(pim2) probability of death (P<0.001). They were more likely to have a cyanotic
heart defect prior to surgery (P<0.001), and to have received ecmo upon icu

admission (P=0.02). Regarding monitoring predictors, patients with aki had
higher heart frequency (P<0.001), higher lactate levels (P<0.001), lower systolic
blood pressure (P<0.001) and less variable systolic blood pressure (P=0.005)
than patients without aki. After backwards feature selection, the remaining
significant predictors were baseline sc, cyanotic heart defect prior to surgery,
and median blood pressure and heart frequency (Appendix, Table 6.A.4). The
multivariable clinical model achieved good discrimination (Figure 6.3, auroc,
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A B C

D E F

G H I

Figure 6.2 Performance of nirs predictors.
Top row. Performance of maximum nirs signal, a. roc curve (auroc, 0.59; 95% ci 0.59-
0.59), b. Decision curve (clinical usefulness in ranges 32-58%), c. Calibration belts (P=0.57).
Middle row. Performance of mean nirs signal, d. roc curve (auroc, 0.59; 95% ci 0.58-0.59),
e. Decision curve (clinical usefulness in ranges 34-72%), f. Calibration belt (P=0.58). Bottom
row. Performance of rmssd of nirs signal, g. roc curve (auroc 0.68; 95% ci 0.67-0.68).
h. Decision curve (clinical usefulness in ranges 27-94%). i. Calibration belt (P=0.60).
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0.75; 95%ci 0.75-0.75), a wide range of clinical benefit (22-93%) and was well
calibrated (P=0.56).

A B C

Figure 6.3 Performance of clinical model.
Performance of clinical model including baseline sc, cyanotic heart defect prior to surgery,
heart rate and blood pressure; a. roc curve (auroc 0.75; 95% ci 0.75-0.75). b. Decision
curve (clinical usefulness in ranges 22-93%). c. Calibration belt (P=0.56).

6.3.4 Comparison of nirs and clinical models performance

The discriminative performance of nirs rmssd for severe aki development
was significantly lower than the performance of the clinical model (P<0.001).
However, combining nirs rmssd with the clinical model improved model
sensitivity which translated in significantly improved discrimination (Figure
6.4 and Table 6.A.5 (Appendix); auroc, 0.79; 95% ci, 0.79-0.80; P<0.001), wider
ranges of clinical benefit (14- 100%), and larger benefit in the 14-68% range
compared with the clinical model (Appendix, Figure 6.A.3). For risk thresholds
lower than 14%, the highest clinical benefit is achieved by considering that all
patients have aki. For risk thresholds comprised between 14% and 68%, the
highest clinical benefit is achieved by combining nirs rmssd with the clinical
model, as nirs rmssd improved model sensitivity (Appendix, Figure 6.A.3A).
Finally, above 68%, the highest clinical benefit is achieved by using the clinical
model only. Crucially at the prevalence of aki in this cohort and for prevalences
reported in the literature [11, 12], nirs would provide benefit. These are the risk
thresholds for which the tool is likely to have clinical impact. Depending on the
intended use of the predictions, only if one would need a more sensitive model,
would nirs monitoring provide additional value
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A B C

Figure 6.4 Performance of combined nirs and clinical model.
Performance of model combining rmssd of nirs signal with clinical model, a. roc curve
(auroc 0.79; 95% ci 0.79-0.80). b. Decision curve (clinical usefulness in ranges 16-100%).
c. Calibration belt (P=0.55).

6.4 discussion

Currently, there is little evidence available to support the use of cerebral
nirs oximetry after pediatric cardiac surgery. In this study, we aimed to
determine the potential of this cerebral oximeter to predict acute kidney
injury by prospectively monitoring children after cardiac surgery for correction
of a congenital heart disease. Overall, we found that the data currently
displayed in cerebral oximeters have only fair discrimination for 6-hour-ahead
prediction of severe aki. Retrospective calculation of nirs variability achieved
better performance, although not sufficient to outperform a clinical model
based on routinely collected patient information. However, combining nirs

variability with the clinical model significantly improved predictive capabilities,
suggesting that the nirs signal carries independent relevant information in
addition to routinely collected clinical data.

Cerebral nirs oximetry is appealing as it allows measuring brain oxygen levels
non-invasively and continuously. In a pediatric perioperative setting where
the use of invasive catheters is not feasible or available, such a monitor has
high potential provided its clinical value is proven. Currently there is little
evidence to support the use of cerebral oximetry at the pediatric patient
bedside. Two randomized trials [7, 27] in coronary artery bypass patients or
preterm infants used an active nirs display and treatment intervention protocol
based on nirs desaturation. They have shown that nirs monitoring avoids
profound cerebral desaturation but were not powered to detect differences
on mortality and morbidity. Other observational and retrospective studies
have reported an association between (dose of) nirs desaturation and worse
(neurodevelopmental) outcomes [4, 28, 29]. A single study has investigated
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the use of nirs oximetry for aki prediction in adults. The authors found that
decreased renal nirs oxygen saturation was predictive for aki development
after cardiac surgery [16]. In accordance with these studies, we found that nirs-
detected lower oxygen saturation was predictive for severe aki. However, the
mean and maximum nirs value were only fair predictors of aki, and although
the time and dose of desaturation below 50% and 60% were predictive for aki,
they did not occur frequently enough for inclusion in the predictive model.

Interestingly, we found that decreased nirs variability had more discriminative
power than the nirs value currently displayed at the patient bedside. Spaeder
and colleagues were the first to investigate nirs variability and found that
decreased nirs rmssd, a notion of high frequency variability, was associated
with poor neurodevelopmental outcomes in neonatal survivors of congenital
heart disease surgery [30]. In a previous study [17], we found that the low
frequency variability (SD-s) was associated with prolonged icu stay and
prolonged duration of mechanical ventilation. Here, as patients developed aki

early during icu stay, the monitoring period before prediction was short which
could have explain the lack of predictive capability from the SD-s. To our
knowledge, this is the first study investigating the use of nirs variability for
acute clinical events, such as severe aki. This study supports displaying such
a metric at the patient bedside, as it may improve the clinical applicability of
nirs-based cerebral oximeters.
The current study not only reports an added predictive value of cerebral
nirs monitoring but also highlights the predictive performance of routinely
collected patient information to predict severe aki after pediatric cardiac
surgery. aki is an increasingly recognized concern in pediatric patients [31].
Therefore, it is essential to identify children whose kidney function will
deteriorate to provide appropriate intervention to mitigate aki [31]. For that
purpose, several biomarkers have shown great diagnostic and predictive
abilities [32, 33]. However, due to their high cost, serial measurements is not
always applicable [34]. The model developed in the current study could be used
continuously at the patient bedside, after translation to an online predictor such
as similar models for adults [35] or encoded in electronic health records.

6.4.1 Strengths and limitations

Our study has several strengths: its prospective and blinded design that
excludes treatment bias, its large sample size as compared to other studies
investigating nirs oximetry [3, 5, 6, 27, 30], and the thorough statistical analysis
of the cerebral nirs oxygen saturation which included not only value-based
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metrics and dose below hypoxic and above hyperoxic thresholds as previous
studies [6, 19], but also measures of variability and frequency.

Our study has several limitations. First, as no precise information on the
cause of aki was available, the clinical model did not include this information,
nor did it include medication, while both could have influenced model
performance. However, the clinical model included relevant surgical data
that were associated with aki. Second, we could not compare or combine
the performance of the models with renal nirs oximetry, which might be a
more sensitive marker of kidney perfusion than cerebral nirs oximetry [6, 16,
36]. However, major drawbacks limit the use of renal nirs oximetry [37, 38].
First, renal oxygen saturation is influenced by the distance between the body
surface and the kidney, which largely varies between patients. Additionally,
the presence of subcutaneous fat alters the measurement of light absorption
by hemoglobin. These limitations explain why the most common clinical
application of the nirs technology has been in assessing cerebral oxygen
saturation, unaffected by these limitations. Third, as a single-center study, our
findings might not generalize to other centers or to different (non-cardiac)
populations. Although we performed internal validation via bootstrapping to
improve generalizability, validation in external centers is required. Fourth, the
lack of standardization between nirs monitors additionally contributes to the
difficulty of identifying nirs critical thresholds in previous studies, and it is
well known that the different devices have discordant values in certain ranges
[39]; therefore, the findings of our study might not generalize to different
cerebral oximeters. Finally, prospective validation of the models developed in
this study is warranted to identify potential clinical benefit for their use at the
patient bedside.

6.5 conclusion

The predictive value of cerebral nirs oximetry as displayed in the current
monitors is limited for prediction of severe aki after pediatric cardiac surgery.
However, nirs variability, in particular combined with routinely collected
patient information, showed improved discrimination. Future studies are
required to identify whether implementation of nirs variability at the bedside
could help identify children whose kidney function will deteriorate early
enough to initiate mitigating interventions.
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Berghe

• Acquisition, analysis, or interpretation of data: Flechet, Güiza,
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• Administrative, technical, or material support: -

• Study supervision: Meyfroidt

The FORESIGHT monitors and sensors used in the study were supplied
partially by CAS Medical Systems Inc. We are grateful to the picu nurses and
residents for the patient care and setting up the near-infrared spectroscopy
monitoring, in particular to Stoffel Lamote, MD, Heidi Delrue, MD, and Marc
Beckers, MD, for patient management and data collection; to Pieter Wouters,
MSc, for database exports; to Koen Vanhonsebrouck, picu head nurse, for the
assistance in coordinating the monitoring setup; to Tom Fivez, MD, for patient
management and signaling eventual technical problems; to Marc Denturck,
Fredrik Hermans, and Jan Lauwers (biotechnology department University
Hospitals Leuven (UZLeuven)) for blinding the FORESIGHT monitors.



170 prediction of aki with near-infrared spectroscopy

6.a appendix

Figure 6.A.1 Distribution of observation windows.
Example of the observation window for a patient who (A) developed aki during icu stay, (B)
did not develop aki. For patient with aki, the observation window corresponds to the time
between admission and 6 hours prior to aki onset. To reduce bias due to monitoring duration,
the duration of the observation window for the non-aki patients was chosen to match that of
the aki cases. (C) Bar chart of the distribution of observation windows for the patients with
aki together with the fitted distribution of observation windows for the patients without aki.
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A B C

Figure 6.A.2 Performance of combined nirs predictors.
A. roc curve of model combining maximum, mean and rmssd of nirs signal (auroc 0.69;
95% ci 0.69-0.70). B. Decision curve (clinical usefulness in ranges 25-79%). C. Calibration
belt (P=0.57).

A B C

Figure 6.A.3 Comparison of performance of clinical model and combined nirs +
clinical model.

A. Comparison of roc curves of clinical model (auroc 0.75; 95% ci 0.75-0.75) and of
combined nirs rmssd + clinical model (auroc 0.79; 95% ci 0.79-0.80). B. Decision curve
of clinical model (clinical usefulness in ranges 22-93%) and of combined nirs rmssd + clinical
model (clinical usefulness in ranges 16-100%). Clinical benefit of combined model is improved
by 2.2% as compared to only using the clinical model at a risk threshold of 20%; 2.4% at
a risk threshold of 40%, and 1.3% at a risk threshold of 60% C. Calibration belt of clinical
model (P=0.56) and of combined nirs rmssd + clinical model (P=0.55).
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Table 6.A.1 nirs predictors.
All patients (n=156) aki patients (n=55) No aki patients

(n=101)
P-
value

Value-based metrics

Mean 70.2 (64.6-74.8) 69.8 (60.2-73.8) 70.4 (66.7-75.1) 0.007

Minimum 61 (53-66) 60 (51-67) 61 (54-66) 0.20

Maximum 78 (72-82) 76 (68-82) 79 (73-83) 0.01

Variability metrics

Maximum-minimum 16 (12-21) 15 (11-19) 16 (12-21) 0.29

sd 2.9 (2.0-3.7) 3.2 (2.0-3.8) 2.9 (2.0-3.6) 0.69

SD-s 2.8 (1.8-3.6) 3.0 (1.8-3.7) 2.7 (1.8-2.8) 0.48

rmssd 0.78 (0.63-0.95) 0.68 (0.56-0.87) 0.83 (0.69-0.98) <0.0001

Slope 0.002 (-0.007-0.011) 0.005 (-0.006-0.014) 0.001 (-0.008-0.008) 0.28

Dose

Dose < patient-specific
25 percentile

0.4 (0.3-0.6) 0.4 (0.2-0.6) 0.4 (0.3-0.6) 0.98

Dose < 50% 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.03

Dose < 60% 0.0 (0.0-0.2) 0.0 (0.0-0.7) 0.0 (0.0 -0.0) 0.001

Dose > patient-specific
75 percentile

14.2 (10.7-16.5) 13.4 (10.5-15.8) 14.4 (11.3-16.7) 0.13

Dose > 80% 0.0 (0.0-0.9) 0.0 (0.0-0.5) 0.0 (0.0-1.1) 0.97

Time

Time < patient-specific
25 percentile

20.0 (15.5-23.2) 20.0 (13.5-23.3) 20.0 (16.1-22.9) 0.41

Time < 50% 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.01

Time < 60% 0.0 (0.0-4.7) 0.0 (0.0-33.3) 0.0 (0.0-0.9) 0.001

Time > patient-specific
75 percentile

19.6 (16.0-22.4) 20.2 (15.8-21.7) 19.1 (16.2-23.2) 0.49

Time > 80% 0.0 (0.0-1.4) 0.0 (0.0-1.0) 0.0 (0.0-1.4) 0.95

Frequency components

Magnitude of first
largest frequency
component

37277 (24816-58793) 39889 (20301-57287) 36063 (25421-59083) 0.93

Frequency of first
largest frequency
component, Hz

632 (420-1020) 625 (404-886) 660 (420-1020) 0.82

Magnitude of second
largest frequency
component

208 (114-469) 225 (125-537) 191 (110-464) 0.25

Frequency of second
largest frequency
component, Hz

225 (151-334) 203 (134-327) 225 (156-334) 0.81

Magnitude of third
largest frequency
component

208 (114-469) 225 (125-537) 191 (110-464) 0.25

Frequency of third
largest frequency
component, Hz

214 (132-347) 212 (127-301) 223 (132-347) 0.83

Data are reported as median iqr. Time and dose predictors are reported as time-weighted metrics. P-value is shown
for differences between patients with and without aki.
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Table 6.A.2 Performance of individual nirs predictors.
auroc (95% ci) or (95% ci) P-value

rmssd 0.68 (0.67-0.68) 0.056 (0.012-0.266) <0.001

Maximum 0.59 (0.59-0.59) 0.951 (0.912-0.991) 0.06

Mean 0.59 (0.58-0.59) 0.944 (0.902-0.987) 0.04

Table 6.A.3 Performance of combined nirs predictors.
auroc (95% ci) or (95% ci) P-value

Combined model 0.69 (0.69-0.70)

rmssd 0.039 (0.007-0.234) <0.001

Maximum 1.105 (0.982-1.243) 0.18

Mean 0.873 (0.775-0.984) 0.07

Table 6.A.4 Performance of clinical model.
auroc (95% ci) or (95% ci) P-value

Clinical model 0.75 (0.75-0.75)

Baseline scr! 472.71 (8.29-34002.48) 0.05

Cyanotic heart defect
pre-surgery

2.68 (1.06-6.84) 0.12

Heart frequency 1.02 (1.00-1.05) 0.13

Blood pressure 0.97 (0.94-1.00) 0.12

Table 6.A.5 Performance of combined nirs and clinical model.
auroc (95% ci) or (95% ci) P-value

Combined model 0.79 (0.79-0.80)

Baseline scr! 182.58 (2.19-29726.40) 0.11

Cyanotic heart defect
pre-surgery

1.94 (0.72-5.26) 0.30

Heart frequency 1.02 (1.00-1.05) 0.16

Blood pressure 0.96 (0.92-1.00) 0.05

rmssd 0.07 (0.01-0.44) 0.01
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180 visualizing cerebrovascular autoregulation insults

abstract

objective : The aim of this study is to visually assess the impact of duration
and intensity of cerebrovascular autoregulation insults on 6-month neurological
outcome is severe traumatic brain injury.

material and methods : Retrospective analysis of prospectively
collected minute-by-minute intracranial pressure and mean arterial blood
pressure data of 261 adult and 99 pediatric traumatic brain injury patients from
multiple European centers. The relationship of 6-month Glasgow Outcome
Scale with cerebrovascular autoregulation insults (defined as the low-frequency
autoregulation index above a certain threshold during a certain time) was
visualized in a color-coded plot. The analysis was performed separately for
autoregulation insults occurring with cerebral perfusion pressure below 50

mmHg, with intracranial pressure above 25 mmHg and for the subset of adult
patients that did not undergo decompressive craniectomy.

results : The color-coded plots showed a time-intensity dependent
association with outcome for cerebrovascular autoregulation insults in adult
and pediatric traumatic brain injury patients. Insults with a low-frequency
autoregulation index above 0.2 were associated with worse outcome and below
-0.6 with better outcome, with and approximately exponentially decreasing
transition curve between the two intensity thresholds. All insults where
associated with worse outcome when cerebral perfusion pressure was below
50 mmHg or intracranial pressure above 25 mmHg.

conclusions : The color-coded plots indicate that cerebrovascular
autoregulation is disturbed in a dynamic manner, such that duration and
intensity play a role in the determination of a zone associated with better
neurological outcome.
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7.1 introduction

Traumatic brain injury (tbi) is one of the most important health care problems
worldwide [1, 2]. The management of severe tbi is primarily aimed at avoiding
secondary brain damage, which mainly manifests as brain ischemia.

Cerebral pressure autoregulation (car) is the capacity of the cerebral
vasculature to maintain a constant cerebral blood flow (cbf) through varying
cerebral perfusion pressure (cpp). It is well known that autoregulation is often
deficient in severe tbi [3], although the degree and range of this dysfunction
can vary among patients, and in time within the same patient [4]. Figaji et al [5]
have demonstrated the validity of the autoregulation concept in children with
tbi.

Continuous monitoring of cerebrovascular autoregulation
through parameters such as the Pressure Reactivity Index (prx) [6] or Low
Frequency Autoregulation Index (lax) [7] has enabled the identification of cpp

ranges in which autoregulation is more active. In retrospective analyses higher
percentages of time of actual cpp contained within these ranges were associated
with better outcomes [7–9].

prx and lax can be used to continuously identify episodes of potentially
impaired cbf in tbi patients. A cut-off value for each index differentiates
between episodes of active and disturbed autoregulation [10, 11]. However,
as was demonstrated for intracranial pressure (icp) [11], it is unlikely that
a static threshold would capture the complexity of the association between
autoregulation and outcome.

The aim of the present study is to assess the effect of car insults, according
to varying definitions of intensity and duration, on functional outcome at six
months based on prospectively collected data from continuously monitored
adult and pediatric patients with severe tbi. In addition, the impact of icp, cpp

and decompressive craniectomy (dc) on the capacity to tolerate the car insults
is investigated.

7.2 methods

7.2.1 Study population

The adult cohort consisted of 259 patients with severe tbi aged 16 years
and older: 164 patients were included from the Brain-IT database [12], which
collected data from 22 centers data between March 2003 and July 2005. The
Multi-Centre Research Ethics Committee for Scotland (MREC/02/0/9) granted
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the use of these data for scientific purposes on February 14, 2002. The data
of the remaining 95 adult patients were collected from 4 centers: 38 from the
San Gerardo Hospital in Monza, Italy, between March 2010 and April 2013;
25 from the University Hospitals Leuven, Belgium, between September 2010

and September 2013; 20 from the University Hospital Antwerp, Belgium, as
part of the Individualized Targeted Monitoring in Neurocritical Care (nemo)
project [13], between May 2010 and June 2013; and 12 from the University
Hospital Tübingen, Germany, between February and December 2009. Local
Ethics Committee approval to use the anonymized data for this analysis was
obtained in all centers.

The pediatric cohort consisted of 99 tbi patients, aged between 2 and 16 years:
81 patients were part of a study on tbi in children, recruited during 62 non-
consecutive months up to July 2003, from two pediatric centers in Edinburgh
and Newcastle, United Kingdom (uk) [Chambers2006a]. The study had Local
Ethics Committee and management approval in both centers and informed
consent was obtained before enrolment. The remaining 18 pediatric patients
were part of the Brain-IT database.

7.2.2 Patient management

Patients were managed according to Brain Trauma Foundation (btf) guidelines.
Data collection included baseline risk factors (age, gender, admission Glasgow
Coma Scale (gcs), admission pupil reactivity), minute-by-minute icp and mean
arterial blood pressure (map) monitoring data, and Glasgow Outcome Score
(gos) at 6 months. For the pediatric patients, a modified gos was used, as
described in the original paper [Chambers2006a]. Monitoring data in the nemo

database was recorded and stored every second; the median value of each
minute interval was taken to obtain a minute-by-minute value. Signals from
all datasets were reviewed independently by two senior clinicians in Leuven,
and obvious artefacts at visual inspection were removed. The arterial blood
pressure was calibrated to the level of the right atrium in Leuven, Antwerp
and in some BrainIT centers, and to the level of the tragus in the other centers.
A correction of the cpp values for arterial blood pressure transducer height
was made based on the information that was obtained on the center-specific
protocol. For patients from centers where the transducer was at atrium level
and who were nursed with the head of the bed elevated at 30

◦, 10mmHg was
subtracted from the registered cpp.
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7.2.3 Visualization method

The method for visualizing the univariate association between insult and
outcome used to assess the pressure and time burden of intracranial
hypertension in Güiza et al [11] was applied in the current analysis to
investigate the relationship between car and outcome. The lax [7] was
calculated for every minute during the monitoring period as a moving Pearson
correlation coefficient between icp and map. car insults were defined as a
lax value, i.e. a Pearson correlation coefficient, exceeding a certain intensity
for a certain duration of time. The Pearson correlation coefficient between
the average number of insults of a certain intensity and duration and gos

was calculated where supported data was available and was expressed by a
graded color code: negative correlations in red and positive correlations in blue.
The contour for zero correlation was highlighted in black and defined as the
’transition curve’ as in the original study.

The relationship between car insults and outcome was visualized separately
for insults for which cpp < 50 mmHg, those for which icp > 25 mmHg and for
the subset of adult patients that did not undergo dc (n=214).

All analyses were done in Matlab 2014b® (The MathWorks, Natick, ma, usa).

7.3 results

Demographics and outcomes of the studied cohorts are presented in Table 1.
The color-coded plots visualizing the correlations between gos at 6 months

and the average number of different types of car insults are shown in Figure
7.1A-C. In each plot, two clear overall regions emerge: one with negative
correlations (blue), indicating types of car insults that occur more frequently
in patients with higher gos; and one with positive correlations (red), indicating
types of car insults that occur more frequently in patients with lower gos.
The transition curves between the two zones are approximately exponential in
all cohorts: for higher insult intensities, the transition occurs at shorter insult
durations and, conversely, for lower insult intensities the transition occurs at
longer insult durations. In all cases, irrespective of duration, car insults of
lax above 0.2 were associated with worse outcome and below -0.6 with better
outcome. Figure 7.1D shows the overlaid transition curves for adults, adults
without decompressive craniectomy and children, respectively; insults of lax

above 0 could be tolerated for 13, 19 and 35 minutes respectively. The plots
for insults where cpp < 50 mmHg or for icp > 25 mmHg were uniformly
associated with worse outcome (colored red) for all studied cohorts (data not
shown).
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Table 7.1 Demographic and outcome data

Adult cohort Adult cohort
without dc

Pediatric cohort

Number of patients (n) 259 214 99

los days, median (iqr) 15 (7-24.25) 14 (7-23) 4 (2-6.75)

Age, median (iqr) 42 (26-58) 42 (26-58) 11.4 (7.9-14.88)

Male gender (%) 79.9 80.4 74.7

Pupil reactivity (%)

None 12.7 11.2 7.1

One 11.2 11.2 11.1

Two 70.7 71.5 74.7

Unknown, untestable or
missing

5.4 6.1 7.1

gcs total, median (iqr) 7 (4-10) 7(4-10) 7 (5-8)

Unknown, untestable or
missing (%)

6.6 6.1 1.0

gcs motor, median (iqr) 4 (1-5) 4 (1.5-5) 4 (2-5)

Unknown, untestable or
missing (%)

4.3 2.8 0.0

dc (%) 17.4 0.0 Unknown

gos, median (iqr) 4 (3-5) 4 (3-5) 4 (4-5)

gos, n (%)

1: death 46 (17.8) 36 (16.8) 12 (12.1)

2: vegetative 10 (3.9) 7 (3.3) 0 (0.0)

3: severe disability 70 (27) 58 (27.1) 7 (7.1)

4: moderate disability 49 (18.9) 44 (20.6) 39 (39.4)

5: low disability 84 (32.4) 69 (32.2) 41 (41.4)
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Figure 7.1 Visualization of correlation between gos and average number of car

insults per gos category
(A) Adults (n=259) (B) Adults without decompressive craniectomy (n=214) (C) Children
(n=99). Each colour-coded point in the plot refers to a number of car insults, defined by a
lax intensity threshold (X-axis), and a duration threshold (Y-axis). The univariate correlation
of each car insult (characterized by lax intensity and duration thresholds) with outcome
is colour-coded according to the scale ranging from -1 to 1. Negative numbers indicate car
insults associated with worse outcome (lower gos categories); positive numbers indicate car
insults associated with better outcome (higher gos categories). The contour of zero correlation
is highlighted in black, and is called the transition curve. (D) Overlaid transition curves for
adults (black), adults without decompressive craniectomy (green) and children (red).



186 visualizing cerebrovascular autoregulation insults

7.4 discussion

In this study, the univariate relationship between 6-month neurological
outcome and car insults is summarized in color-coded plots. These plots
do not represent the cumulative time/pressure dose per patient, but per
type of insult, characterized by duration and intensity. The main finding is
the emergence of regions of positive and negative association between car

insults and outcome that were separated by transition curves, which had an
exponential course similar to that seen in [7] for icp. The higher the lax, the
shorter the time this insult type could be tolerated. Although the association
appears stronger for the case of adults without decompressive craniectomy,
remarkably the transition curves for the 3 studied cohorts lie very close together,
hinting at the universal applicability of the car insult concept, irrespective of
age. Insults when cpp < 50 mmHg or icp > 25mmHg were associated with
poor outcome regardless of car status, which mirrors the findings of Güiza et
al [11].

This study supports previous work reporting on the dynamic aspect of
autoregulation impairment in tbi [4, 6]. Additionally, this study elaborates on
the concept of grey zone that has been introduced with other indices available
at the bedside such as prx or mean flow index (mx). Critical thresholds of
autoregulation have been introduced for these indices [10, 14]. For both indices,
the association with outcome is unclear between 0-0.05 and 0.3. In the present
study, we showed that between -0.6 and 0.2, the lax has a time-dependent
relationship with outcome, which might explain why a clear association
with outcome, that disregards the duration component, could not be defined.
Further studies are needed to assess whether the proposed methodology could
redefine the grey zone of prx and mx. Furthermore, together with the previous
analysis on icp insults [11] the current study further advocates the need to
bring the patient in a state of functional autoregulation in adult and pediatric
tbi management.

This study has the following limitations. First, the sample size remains
relatively small, noticeably so for the pediatric cohort, where the lack of
data likely precluded the generation of a smoother transition curve. Second,
as the data was available in minute-by-minute resolution only lax could be
studied to define car insults. Third, the data incorporate therapeutic influences,
which cannot be removed. Fourth, artefacts in the monitoring data were
manually removed by two clinical experts, and we cannot exclude that some
artefacts went unnoticed. Lastly, we cannot exclude an influence on results from
confounders that were not analyzed.
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7.5 conclusion

Following tbi, car is disturbed in a dynamic manner, such that duration
and intensity play a role in the determination of a safe car zone. Insults of
impaired car can only be sustained provided that they are of short duration.
Hence, episodes of disturbed car should be considered as brain endangering
secondary insults in their own right, irrespective of icp and cpp. The current
findings need to be validated with other car indexes and the relative weight of
icp and car insults needs to be further explored.
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The authors wish to acknowledge the non-author steering group members
of Brain-IT: Barbara Gregson, Tim Howells, Karl Kiening, Arminas Ragauskas,
Juan Sahuquillo and Jan Oliver Neumann.



B I B L I O G R A P H Y

[1] A. A. Hyder, C. A. Wunderlich, P. Puvanachandra, G. Gururaj, and O. C.
Kobusingye. The impact of traumatic brain injuries: a global perspective.
NeuroRehabilitation 22,5 (2007), pp. 341–353.

[2] W. Peeters et al. Epidemiology of traumatic brain injury in Europe. Acta
Neurochir. (Wien). 157,10 (Oct. 2015), pp. 1683–1696.

[3] G. J. Bouma, J. P. Muizelaar, K. Bandoh, and A. Marmarou. Blood
pressure and intracranial pressure-volume dynamics in severe head
injury: relationship with cerebral blood flow. J. Neurosurg. 77,1 (July
1992), pp. 15–19.

[4] G. E. Sviri, R. Aaslid, C. M. Douville, A. Moore, and D. W. Newell. Time
course for autoregulation recovery following severe traumatic brain
injury. J. Neurosurg. 111,4 (Oct. 2009), pp. 695–700.

[5] A. A. Figaji et al. Pressure autoregulation, intracranial pressure, and
brain tissue oxygenation in children with severe traumatic brain injury.
J. Neurosurg. Pediatr. 4,5 (Nov. 2009), pp. 420–428.

[6] M. Czosnyka, P. Smielewski, P. Kirkpatrick, R. J. Laing, D. Menon,
and J. D. Pickard. Continuous Assessment of the Cerebral Vasomotor
Reactivity in head injury. Neurosurgery 41,July (1997), pp. 11–19.

[7] B. Depreitere et al. Pressure autoregulation monitoring and cerebral
perfusion pressure target recommendation in patients with severe
traumatic brain injury based on minute-by-minute monitoring data. J.
Neurosurg. 120,6 (June 2014), pp. 1451–1457.

[8] M. J. H. Aries et al. Continuous determination of optimal cerebral
perfusion pressure in traumatic brain injury*. Crit. Care Med. 40,8 (Aug.
2012), pp. 2456–2463.
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abstract

purpose : Clinical trials aiming at aggressively treating intracranial pressure
(icp) below fixed, generic thresholds have given disappointing results. The
cumulative time-intensity burden (dose) of elevated icp and of impaired
cerebrovascular pressure autoregulation (car) are associated with worse
outcome in patients with severe traumatic brain injury (tbi). At the population
level, this dose can be represented graphically, to identify the time-intensity
burden associated with good or poor outcome. We hypothesized that the course
of individual patients could be visualized both in terms of icp and car in the
population-based plots. For that purpose, we aim to develop the prototype of
a bedside monitor, to calculate and display the Low Frequency Autoregulation
Index (lax) as a measure of car, and to visualize patient-specific secondary
brain insults in terms of icp and of car, in a continuous way.

material and methods : Retrospective analysis of minute-by-minute icp

and car monitoring data from a large multicenter database of tbi patients. We
visualized in individual patients the current dose and the cumulative dose,
from the past 6 hours, and since intensive care unit (icu) admission, both
for icp and car. Doses were overlaid on population–based color-coded plots
that visualize the association with 6-month neurological outcome. Additionally,
we calculated the percentage of time spent in the zone associated with poor
outcome (red zone) and compared it to the time spent above the traditional
threshold of 20 mmHg.

results : A prototype sofware was created to visualize the current and
cumulative burden of icp and car of individual patients. We present the clinical
course of 2 patients, 1 with good outcome, and 1 who died.

conclusions : The proposed method visualizes the current and cumulative
time and pressure burden of icp and car for individual patients, which could
help a neuro-intensivist in identifying when a patient is currently in a state of
potentially harmful elevated icp, impaired autoregulation or when the outcome
is at a turning point.
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8.1 introduction

Traumatic brain injury (tbi) is one of the most important health care problems
worldwide [1, 2]. In the hours and days following the initial traumatic insult (or
primary injury), destructive and self-propagating biological changes in the brain
can lead to subsequent additional damage (or secondary injury) [3]. Prevention
and treatment of secondary injury is the main goal of neuro-critical care in
patients with tbi.

A subtype of secondary brain injury is intracranial hypertension [4]. Such
events of elevated icp have been shown to be associated with worse outcome [5].
International guidelines recommended icp lowering therapies at a threshold of
20 or 22 mmHg [6, 7]. Following the intuition that universal thresholds are
likely suboptimal and that duration of elevated icp plays a role [8], Güiza et
al plotted the association between neurological outcome and the dose of icp,
defined as a combination of intensity and duration [9]. Two distinct regions
associated with good or poor neurological outcomes emerged from the plot,
suggesting the importance of the time-intensity relationship of icp for patient
outcome. Additionally, these two regions were affected by the cerebrovascular
pressure autoregulation (car) capability of the patient.

car is the capacity of the cerebral vasculature to maintain a constant cerebral
blood flow (cbf) through varying cerebral perfusion pressure (cpp), the driving
pressure gradient for blood to enter the skull. car is often deficient in severe
tbi [10], although the degree and range of this dysfunction can vary among
patients, and in time within the same patient [11]. Currently, international
guidelines state that evidence is insufficient to support recommendation for the
management of patients with severe tbi regarding car [6]. A potential culprit
is that continuous monitoring of car is challenging [12], largely because it
is usually based on indices reflecting the correlation between icp and mean
arterial blood pressure (map) when these signals are captured at very high
frequencies, which restricts its use to specialized research centers[13]. As such,
the lax is a promising index developed by our research group [14], but has
never been evaluated prospectively. In a previous study [15] (Chapter 7), we
have shown that both the duration and intensity of deficient car, measured
with lax, play a role in the determination of zones associated with good or
poor neurological outcome.

The population-based plots visualizing the associations of the doses of icp

and car with neurological outcome [9, 15] open up avenues for novel ways
of managing patients with severe tbi. We hypothesized that the course of
individual patients could be visualized both in terms of icp and car in the
population-based plots. For that purpose, we aim to develop the prototype of
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a bedside monitor, to calculate and display the lax, and to visualize patient-
specific secondary brain insults in terms of icp and of car, in a continuous
way.

8.2 methods

8.2.1 Patient population

Retrospective analysis of minute-by-minute icp and map monitoring data from
patients with severe tbi included in the large multicenter Brain-IT database [16],
which collected data from 22 centers data between March 2003 and July 2005.
The use of these data for scientific purposes was granted by the Multi-Centre
Research Ethics Committee for Scotland (MREC/02/0/9, February 14, 2002).

8.2.2 Cerebral autoregulation

car was assessed using the lax [14], calculated every minute of the monitoring
period, as a moving Pearson correlation coefficient between icp and map.

8.2.3 Visualization of patient-specific icp and car dose

The dose visualization concept was designed both for the icp and lax signals.
As illustrated for the icp signal in Figure 8.1, the icp trace is shown together
with the patient-specific icp dose, overlaid on the population plot from [9]. The
current icp dose represents the combination of intensity and duration of icp

currently experienced by the patient. Additionally, the 6h cumulative icp dose,
the worst icp dose during the previous 6 hours, is represented to visualize
whether the patient is recovering or worsening as compared to its state within
the past 6 hours. Finally, the cumulative icp dose shows the worst icp dose the
patient has experienced since admission to the icu.

8.2.4 Software development

A prototype of a standalone software was developed to visualize the
aforementioned concept dynamically at the patient bedside.

The software development was based on the Model-View-Controller software
architectural pattern, using the Kivy Framework [17] from Python version
3.5 (Python Software Foundation, http://www.python.org). A scheme of the
prototype software is shown in Figure 8.2. The user interacts with the controller,
which communicates with the application to collect patient information from

http://www.python.org
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Figure 8.1 Snapshot of the patient-specific dose of icp.
The region of icp episodes currently experienced by the patient is plotted in opaque colors
(current icp dose); the cumulative icp burden of the previous 6 hours, corresponding to the
worst state experienced by the patient during the past 6 hours, is plotted with a black line (6h
cumulative icp dose); and the cumulative icp burden since icu admission is plotted using
transparent colors (cumulative icp dose).
Regions in blue correspond to doses associated with good 6-month neurological outcome and
in red, with poor 6-month neurological outcome.

databases or the patient monitor, stores information and implements the logic.
The application sends the information that needs to be visualized on the
interface through the Kivy Language.

At the icu of the University Hospitals Leuven (UZLeuven), patient data from
the various monitors and devices are captured on a minute-by-minute basis in
a Patient Data Management System (pdms) (MetaVision, iMD-Soft, Needham,
ma, usa). The pdms contains several structured query language (sql) databases,
one of which is anonymized for educational use. This database was used to
access patient data.
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Figure 8.2 Scheme of software.
The user interacts with the controller, which communicates with the application to collect
patient information from databases or the patient monitor, stores information and implements
the logic. The application sends the information that needs to be visualized on the interface
through the Kivy Language.

Figure 8.3 Visualization of patient-specific icp dose in a patient with Glasgow
Outcome Score (gos) 1

A. Snapshot after 6 hours of icp monitoring B. Snapshot after 24 hours of icp monitoring C.
Snapshot at the end of icu stay and consequent patient death (127 hours of icp monitoring).
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Figure 8.4 Visualization of patient-specific car dose in a patient with gos 1

A. Snapshot after 6 hours of lax monitoring B. Snapshot after 24 hours of lax monitoring C.
Snapshot at the end of icu stay and consequent patient death (126 hours of lax monitoring).

8.3 results

8.3.1 Visualization of patient-specific icp and car dose

Figures 8.3 and 8.4 show three snapshots of the visualization of the icp and
car dose in a 23-year-old man with a Glasgow Coma Scale (gcs) of 11. His
median [interquartile range (iqr)] icp was 20.0 [17.0-25.0] mmHg. The patient’s
icp was above 20 mmHg for 3616 minutes (47.3% of total monitoring time),
and was in the red zone for the majority of the monitoring time (6420 minutes
(84.0% of total monitoring time)). Regarding autoregulation, the patient’s lax

was passive (below 0) 52.3% of the monitoring time and in the red zone 33.5%
of the monitoring time. The patient died after 127 hours of icp monitoring (gos

1).

Figures 8.5 and 8.6 shows three snapshots of the visualization of the icp

and car dose in a 17-year-old man with a gcs of 6. His median [iqr] icp was
16.0 [14.0-17.0] mmHg. The patient’s icp was above 20 mmHg for 874 minutes
(9.6% of total monitoring time). During the majority of the monitoring time,
the patient’s icp episodes remained in the blue zone. Only 170 minutes were
spent in the red zone (1.9% of total monitoring time). Controversially, regarding
autoregulation, the patient’s lax was passive (below 0) 78.8% of the monitoring
time and in the red zone 76.7% of the monitoring time. The patient had good
6-month neurological outcome (gos 5).
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Figure 8.5 Visualization of patient-specific icp dose in a patient with gos 5

A. Snapshot after 6 hours of icp monitoring B. Snapshot after 24 hours of icp monitoring
C. Snapshot at the end of icu stay (151 hours of icp monitoring), after which the patient
was discharged from the icu.

Figure 8.6 Visualization of patient-specific lax dose in a patient with gos 5

A. Snapshot after 6 hours of lax monitoring B. Snapshot after 24 hours of lax monitoring
C. Snapshot at the end of icu stay (88 hours of lax monitoring), after which the patient
was discharged from the icu.
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Figure 8.7 Snapshot of the main screen of the prototype software.
The clinical staff should enter the hospital number of the patient to start the software. The
main screen displays the traces of icp, map and lax together with the dose of icp and the
dose of car.

8.3.2 Prototype software

The interface of the developed software is shown in Figure 8.7.

To start the software, the nurse enters the patient identification number.
Every minute, the prototype queries the values of icp and map signals with
their related time stamp from the pdms database. Following reception of data,
the lax index is calculated and signals are processed to compute the icp and
car doses. After calculation, the software refreshes its window to visualize the
newly calculated logic.

8.4 discussion

In this study, we have demonstrated that patient-specific icp and car doses
can be visualized on population-based plots representing the univariate
relationship between 6-month neurological outcome and icp or car insults
[9, 15]. Additionally, we presented a prototype of a monitor with two novel
patient-specific parameters, the icp dose and the car dose.

The developed prototype is ready to be tested in a prospective observational
blinded study, to establish its feasibility to perform real-time analyses. The
study is currently being set up and will investigate the correct functioning of
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the software in real-time. Upon study completion, the software will be ready to
be tested in an interventional study.

Currently, guidelines on management of patients with severe tbi recommend
the administration of therapies based on generic and undifferentiated
thresholds [6]. Both the dose of icp and lax have been associated with worse
outcome in patients with severe tbi [9, 15]. Therefore, displaying patient-
specific dose of icp and car at the bedside could be a first step towards
patient-specific management [18, 19]. They might provide information for
neuro-prognistication, and therefore help family counseling. They might also
help clinical decision making, such as administering a more aggressive therapy
or assess the effect of current therapy [20]. A prospective randomized controlled
trial (rct) will be necessary to assess the potential clinical benefit of the
software for the management of patients with severe tbi.

In the meantime, to facilitate the use of the prototype at the bedside, several
challenges have to be addressed. First, an intrinsic risk from the integration of
different monitored signals might arise. Indeed, different information sources
might produce contradictory diagnostics as they evaluate different aspects of
the health-state of the patient. Although at first, this might seem an unexpected
situation; this is actually the reality that a clinician must confront daily.
Additionally, software usability related to the design but also to the clinical
requirements has to be examined. For that purpose, usability evaluations
should be conducted with the medical team during feedback sessions in
order to identify potential flaws or different clinical needs. For instance, in
a long-stay patient, it might be more appropriate to show the cumulative
dose of the previous 24 hours instead since icu admission. After feedback, the
prototype should be redesigned iteratively to ensure its effectiveness, efficiency
and being satisfying to use. For that purpose, tests should be conducted
by an interdisciplinary team of potential users including neuro-surgeons,
neurosurgical trainee, intensivists, intensivist trainee, and nurses.

8.5 conclusion

In this study, we have developed a prototype of a bedside monitor to visualize
the current and cumulative icp and car doses in patients with severe tbi.
Opportunities for using these metrics as decision-support for the management
of patients with severe tbi remains to be investigated prospectively.
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9
D I S C U S S I O N

Critically ill patients are admitted to the intensive care unit (icu) with acute
life-threatening conditions. The diagnostic-therapeutic cycle in these patients is
short as their clinical situation may vary rapidly. It is therefore of great interest
to detect those patients most vulnerable to specific organ deterioration as early
as possible. Prediction plays a crucial role in the management of critically ill
patients.

Due to the massive quantities of data generated at the patient bedside,
clinicians are facing the problem of information overload. It is virtually
impossible to process all the data from the various sources at the same time
and over time. Big data analytics, a term that encompasses the application of
data-driven advanced analytics such as machine learning techniques, are able
to process large amount of data to perform pattern recognition, predictions, or
generate data-driven hypothesis.

In this thesis, we aimed to apply big data analytics to gain novel insights
in critical illness and to develop and validate decision support applications to
help clinicians in the management of critically ill patients. We focused on three
objectives, with potential to improve patient care, namely 1) early detection of
acute kidney injury, 2) assessment of the utility of near-infrared-based cerebral
oximetry, and 3) detection and refinement of secondary brain injuries.

9.1 early detection of acute kidney injury

9.1.1 Main findings

Acute kidney injury (aki) affects approximatively 40% of critically ill patients
and is associated with increased risks of morbidity and mortality, and with
high financial costs [1–4]. aki is diagnosed according to an increase in
serum creatinine from its baseline value or a low rate of urine output [5].
Early diagnosis of aki remains a major clinical challenge in critical care [6].
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Its imprecise early identification could partially explain why the search for
strategies and interventions to mitigate its course has been unsuccessful [7–12].

In Chapter 3, we developed and validated machine-learning-based
prediction models (jointly referred to as AKIpredictor) for the development
of aki during the first week of icu stay in a general icu population. Four
models were developed to mimic the sequential availability of clinical data
at the bedside: (1) before and (2) upon icu admission, (3) on the morning
of the first day, and (4) after 24 hours of icu stay. All models were based
on routinely collected patient information, and the fourth model added
information extracted from time series of monitoring data. The models were
developed both for the prediction of any stage and of the most severe stages of
aki. The models’ performance was good to very good, and gradually improved
with data availability. Additionally, this study was the largest study of the
most researched aki biomarker, which, when measured at icu admission, was
outperformed by the AKIpredictor. The models were made available online via
an open-access web application (Figure 9.1, www.akipredictor.com).

Although this study is a major step forward in the global aim of recognizing
aki early, several limitations limit its broad application. First, aki was only
diagnosed based on the serum creatinine criterion, as hourly measurements of
urine output were not prospectively collected. However, a high proportion of
patients develop aki according to the urine output criterion only [13]. Second,
prospective external validation is required to assess its generalizability and
adoption outside the research area. Indeed, it is unclear how such models
should be used in clinical practice and how they compare to bedside physicians.

To answer this question, in Chapter 4, we conducted a prospective
observational blinded study to compare the predictive performance of
AKIpredictor and physicians for the development of the most severe stages
of aki during the first week of icu stay. Interestingly, AKIpredictor retained
good predictive performance when aki was classified according to both urine
output and serum creatinine criteria. Physicians predicted aki with good
discrimination but with an over-estimated risk. Although achieving a slightly
lower discrimination, AKIpredictor showed improved calibration and net
benefit. This suggests an added value to physicians’ predictions, in particular
for junior physicians, when physicians were not confident in their predictions,
or when it is of interest to gather predictions at fixed time points such as
inclusion in clinical trials.

www.akipredictor.com
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Figure 9.1 Snapshot of AKIPredictor website, www.akipredictor.com.

www.akipredictor.com
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9.1.2 Current impact of research

Risk assessment and early detection of aki have been listed as one of the
main steps to improve the outcome of patients with aki [14]. The open-access
website provides opportunities to use the AKIpredictor for research, such as
comparison with new aki biomarkers or selection of high risk patients, and for
clinical purposes worldwide. Between its release in January 2017 and August
2018, the website was accessed more than 3200 times by more than 2200 users
from 95 countries (Figure 9.2). The majority of the users accessed the website
from the United States, France, Mexico, Belgium and the United Kingdom.
Approximately 15% of the users access the website recurrently.

Figure 9.2 Usage statistics of the AKIPredictor website.
a. Monthly number of sessions between January 2017 and August 2018, b. Geographic
coverage: color saturation according to number of sessions per country.

The prospective study, although of limited sample size, strengthens the
generalizability of AKIpredictor to predict aki with good performance in
similar populations. Our findings suggest a potential for overall improvement
of care with the concurrent use of physicians’ expertise and accurate prediction
models like the AKIpredictor. To the best of our knowledge, this study is the
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first to report performance of physicians to predict aki, laying ground for
benchmarking opportunities.

Previous research has focused on biomarkers for early detection of aki but
their performance has not been compared against physicians. Nevertheless,
biomarkers and prediction models such as AKIpredictor have several
advantages. Physicians are not always available at the bedside and we have
shown that clinical expertise and confidence about their prediction affected
physicians’ predictive performance. Biomarkers and prediction models, on the
other hand, would offer a systematic and similar stratification within clinical
teams and across centers. However, biomarker assessment has an additional
cost. All these aspects have to be considered to make the optimal choice for aki

early detection.
To be clinically useful, biomarkers should add value beyond routinely

collected data. Investigating new aki biomarkers is often started in small
sample-sized studies. The AKIpredictor web-application could be used as a
benchmark in such studies to assess the benefit of biomarkers as compared to
available clinical data.

9.1.3 Future perspectives

The current AKIpredictor web-application requires manual data entry. To
promote the use of such models, automatic data extraction from electronic
health record (ehr) could improve the user friendliness. Additionally,
automatic data extraction is required to implement the model based on patient
monitoring.

Although the prospective validation of the AKIpredictor (discussed in
Chapter 4) strengthens its generalizability, large multi-center and multi-
continental prospective validation is required to ensure validity worldwide.
Such validation could highlight a potential need for recalibration or identify
subpopulations for which the model is not optimal. Such validation is
warranted in particular in North and South America, where there is an
apparent interest in the predictor but where the population might be different
as compared to Belgian critically ill patients.

A potential next step towards personalized medicine would combine such
clinical prediction model with biomarker assessment (Figure 9.3). Decision
curve analyses showed that AKIpredictor could be used to identify the high-
risk patients who would benefit most from incurring the additional cost of a
biomarker evaluation, which would reduce unnecessary and expensive testing.
Additional clinical benefit of this combination has to be examined prospectively.
Potential promising biomarker candidates are the urinary cell cycle arrest
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biomarkers, tissue inhibitor of metalloproteinase-2 (timp-2), and insulin-like
growth factor-binding protein 7 (igfbp-7). timp-2 and igfbp-7 could be specific
early markers of aki, as they are expressed to prevent cells from dividing
in case of cellular stress. They achieved good performance in predicting aki

across different populations of critically ill [15–17] and the combination of the
two biomarkers is available on the market as a diagnostic test (NephroCheck,
Astute Medical, San Diego, ca, usa). However, the exact role of this biomarker
in clinical practice is still unclear [18].

Figure 9.3 Potential diagnostic tool for early detection of aki [19].
Biomarkers could be measured in high risk patients stratified by AKIpredictor.

Finally, in order to investigate the impact of using the AKIpredictor at the
bedside, prospective randomized studies are warranted, focusing on patient
outcome such as mortality or long-term renal function. Upon success, this
would open up potential valorization avenues such as licensing the algorithm to
companies involved in biomarkers or drug development or in electronic health
records.

9.2 assessment of the utility of nirs-based cerebral oximetry

9.2.1 Main findings

Cerebral oximetry by near-infrared spectroscopy (nirs) is used frequently in
critically ill children to measure cerebral tissue oxygen saturation (SctO2) [20,
21] but guidelines on its use for decision making are lacking. There is currently
no consensus on which critical nirs thresholds could guide patient care, trigger
interventions, or be used for prognostication [22–24]. Given the relatively high
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cost of the monitoring sensors, it is crucial to determine specific settings in
which nirs monitoring could improve patient care.

With the aim of gaining insights into the usefulness of cerebral nirs oximetry,
a prospective observational blinded study was conducted at the pediatric
intensive care unit (picu) of the University Hospitals Leuven (UZLeuven)
between October 2012 and November 2015. Critically ill children and infants
with congenital heart disease, younger than 12 years old, were monitored with
the FORESIGHT cerebral oximeter (CAS Medical Systems, Branford, CT) from
picu admission until they were weaned off mechanical ventilation. Physicians
were blinded to the cerebral oximeter signal.

In Chapter 5, we present results of the observational study. We assessed
whether SctO2 predicts icu and hospital outcomes, in particular picu length of
stay, duration of invasive mechanical ventilation, and mortality in critically ill
children after pediatric cardiac surgery. We calculated predictors on the first
24 hours of SctO2 monitoring, using advanced time-series analysis. Of all
the investigated predictors and after correction for several confounders, both
a measure of variability (standard deviation of a smoothed SctO2) and the
dose of desaturation (depth and duration below the 50% saturation threshold)
remained significant predictors. Hence, we found that an increased SctO2

variability and an increased dose of desaturation were associated with longer
picu and hospital stays and with longer duration of mechanical ventilation after
pediatric cardiac surgery. Furthermore, our study highlighted the difference in
SctO2 between patients with cyanotic versus acyanotic heart defect. Hence, we
recommend that future studies should be adequately powered to analyze these
populations separately.

In pediatric perioperative settings, the use of invasive catheters is not
feasible or available. Therefore, cerebral nirs oximetry is also used as a
hemodynamic monitor for early recognition of an inadequate global oxygen
supply/demand relationship, and to adapt interventions to minimize the risk
of secondary organ dysfunction [25]. Hemodynamic instabilities contribute
significantly to the development of aki, which is very common after pediatric
cardiac surgery and associated with adverse outcomes [26, 27]. Therefore, in
Chapter 6, we investigated the ability of cerebral nirs oximetry to predict
severe aki after pediatric cardiac surgery and assessed its additional predictive
value to routinely collected data. Overall, we found that the data currently
displayed in cerebral oximeters have only fair discriminability for 6-hour-
ahead prediction of severe aki. Retrospective calculation of nirs variability
(measured using the root mean square of successive differences) achieved
better performance, although not sufficient to outperform a clinical model
based on routinely collected patient information. However, combining nirs
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variability with the clinical model significantly improved predictive capabilities,
suggesting that the nirs signal carries independent relevant information in
addition to routinely collected clinical data.

9.2.2 Current impact of research

Current cerebral oximeters only display the value of cerebral tissue oxygen
saturation and its trace over the past hours at the bedside. We did not find any
association between SctO2 value and the investigated patient outcomes. Some
versions of cerebral oximeters allows the user to calculate the desaturation dose
below a user-specific threshold (Root with O3 Regional Oximetry, Masimo, ca,
usa). However, studies showing the benefit of using such metric to improve
patient outcomes are lacking. The two analysis performed in this thesis suggest
that nirs variability is associated with patient outcome and might provide
additional information to routinely collected patient information. As this study
was observational, our findings cannot support any conclusions regarding the
postoperative management of critically ill children after cardiac surgery. Future
studies are required to identify whether the implementation of nirs variability
at the bedside could help drive therapeutic interventions and improve patient
outcome.

9.2.3 Future perspectives

The physiologic meaning behind nirs variability is unclear. It has been
hypothesized that nirs oximetry could be used to assess cerebrovascular
autoregulation (11, 24). Future studies are necessary to assess whether nirs

variability is related to impaired cerebral autoregulation. Additionally, studies
are warranted to assess how caregivers could improve or modify nirs

variability [28]. These steps will be necessary in order to design a nirs-based
intervention to assess whether corrective interventions can effectively reverse
the desaturation or the decreased or increased variability, and whether these
interventions can lead to improved patient outcome.

Another future perspective is to analyze whether cerebral nirs monitoring
could add value for other outcomes than the ones already investigated. During
icu stay, critically ill infants and children are treated for life-threatening
conditions during crucial phases of development which makes them
particularly vulnerable for impaired longer-term neurocognitive functioning
[29–31]. Indeed, 4 years after admission to an icu, children who had been
critically ill revealed a severe intelligence deficit of 15 points on the intelligence
quotient (IQ) and impaired performance on other tests for neurocognitive
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development as compared with healthy siblings and matched control children
[32]. To date, the exact cause(s) of the longer-term neurocognitive deficit
observed in children who have been critically ill remain unclear. The most likely
culprit is low brain perfusion due to low cardiac output and/or low blood
pressure, which would deprive the brain of the normal supply of nutrients and
oxygen. Cerebral nirs monitoring could be an early indicator of critical changes
in brain perfusion.

For that purpose, children involved in the current observational study have
been seen at follow-up 2 years after icu stay. A battery of tests, similar to
the ones performed in [33], were performed to assess children neurocognitive
function. The neurocognitive testing has been finalized recently, and the
analysis will be performed in a near future.

9.3 detection and refinement of secondary brain injuries

9.3.1 Main findings

Traumatic brain injury (tbi) is one of the most important health care problems
worldwide, affecting approximately 2.5 million people each year and yielding
75 000 deaths [34]. In the United States only, the annual burden of tbi is
estimated more than $75 billion [35]. tbi is caused by the application of
mechanical force to the head, inducing different types of brain damage, such as
brain parenchyma contusions, diffuse lesions to axonal fibers due to stretching
and tearing, and epidural or subdural hematomas [36]. In addition, tbi may
disrupt the integrity of the blood-brain barrier and damage the neurovascular
unit.

In the hours and days following the initial traumatic insult (or primary
injury), destructive and self-propagating biological changes in the brain can
lead to subsequent additional damage (or secondary injury) [37]. Prevention
and treatment of secondary injury is the main goal of neuro-critical care in
patients with tbi. Following the failure of several randomized controlled trials
to improve the outcome of patients with severe tbi [38–41], there is an urgent
need for better definitions of secondary insults [42–44].

A subtype of secondary brain injuries is elevated intracranial pressure (icp),
which has been shown to be associated with worse outcome [45]. Based on
this observational study, international guidelines recommended icp lowering
therapies at a threshold of 22 mmHg [46]. Following the intuition that universal
thresholds are likely suboptimal and that duration of elevated icp plays a role
[47], Güiza et al [48] plotted the association between neurological outcome
and the dose icp, defined as a combination of intensity and duration. Two
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distinct regions associated with good or poor neurological outcomes emerged
from the plot, suggesting the importance of the time-intensity relationship of
icp for patient outcome. Additionally, these two regions were affected by the
cerebrovascular pressure autoregulation (car) capability of the patient.

Another promising avenue in the refinement of secondary brain injury is
the assessment of car. Currently, international guidelines state that evidence
is insufficient to support a recommendation regarding car-based management
in tbi patients [46]. In Chapter 7, we investigated whether episodes of deficient
car are associated with worse clinical outcomes, and can be defined as an
additional type of acute secondary brain injury. Using a similar methodology to
Güiza et al [48], we investigated the association between 6-month neurological
outcome and the dose of cerebral autoregulation deficiency, in a large database
of patients with severe tbi. The resulting color-coded plots showed a time-
intensity association with outcome for car insults in adult and pediatric
patients with severe tbi. For both cohorts, two distinct regions associated with
good or poor outcomes were found, separated by an exponential transition
curve. This indicates that car is disturbed in a dynamic manner, such that
duration and intensity play a role in the determination of a zone associated
with better neurological outcome.

The two population-based color-coded plots open up avenues for novel ways
of managing patients with severe tbi. Indeed, the course of individual patients
could be visualized both in terms of icp and car in the population-based
plots, and patient-specific thresholds can be inferred from the plots to adapt
therapy. Additionally, continuous monitoring of car is challenging and usually
based on indices reflecting the correlation between icp and blood pressure
signals captured at high frequency [49, 50]. As such, the Low Frequency
Autoregulation Index (lax) is a promising index developed by our research
group [50], which has never been evaluated prospectively. For that purpose, in
Chapter 8, we developed the prototype of a bedside monitor. The prototype is
able to calculate and display the lax as a measure of car, and to visualize
patient-specific secondary brain injuries in terms of icp and of car, in a
continuous way (Figure 9.4).

9.3.2 Current impact of research

The proof-of-concept has been presented at several neuro-related conferences
and meetings (icp2016, ncs2016, bsn2017) and has raised the audience interest.
Potential valorization avenues have been considered, and licensing or the
creation of a spin-off company to promote the software at a larger scale will
be examined.
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Figure 9.4 Snapshot of the prototype interface.

9.3.3 Future perspectives

The global framework International Initiative for Traumatic Brain Injury
Research (intbir) has projects to advance tbi research in Europe, the United
States and Canada [51]. Under the umbrella of intbir, center-tbi is a large
European project that aims to improve the care of patients with tbi [52]. center-
tbi is currently recruiting 5400 patients from 60 centers (including UZLeuven)
across 20 countries, of which 1800 will be critically ill. The creation of this
large and unique database will offer new opportunities to validate the findings
presented in this thesis.

A prospective observational blinded study to evaluate the prototype is
currently being set up. The study will investigate the correct functioning of
the software in real-time. Upon study completion, the software will be ready
to be tested in an interventional study. Such study will evaluate whether the
outcomes of patients with severe tbi can be improved by using the prototype
for patient management. To prevent lack of conclusion [53], a randomized
controlled trial with three arms could be considered where the first two arms
would be managed according to standard of care, respectively blinded and
non-blinded to the software, and the last arm would be managed according to
a particular carefully-designed therapeutic protocol.
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9.4 implementation details

This final section focuses on the specific implementation details that have
been used during this thesis. Programming was performed using Python
version 2.7 and 3.5, from the Anaconda suite, using PyCharm as integrated
development environment (ide). Python is a free, open-source, widely used,
and high level programing language. Its applications are diverse and include
web development, statistics, software development, graphical user interface
development and system administration. Its diversity, open-access, ease of
implementation and large community motivated the choice of Python as
programming language.

Statistical analysis were performed using Numpy, Pandas and Statsmodel
Python libraries. Machine learning models were developed using the scikit-
learn Python library [54], and Weka 3.7 [55]. Weka provides a free, open-source
machine learning toolbox via a graphical interface, hence not requiring any
programming knowledge. The AKIpredictor website was developed using the
Django 1.8 framework [56]. Django tackles the majority of the web interface
to encourage rapid development and design. Its use was motivated by the
necessity of a sklearn- and python-compatible website to run the AKIpredictor.
Hosting of the website is tackled by Webfaction on a Nuxit-registered domain.
The prototype software was developed using the Kivy framework [57]. The use
of Kivy was motivated by its free, open-access, simplicity of programming, and
cross platform compatibilities aspects.

Github was used as a version control software for on-going projects, to
track changes in codes and documents. Finalized or submitted projects were
uploaded to Gitlab where I created a common repository for our laboratory
(https://gitlab.com/licm), to promote code sharing between PhD students and to
ensure tracking and transferability of finalized projects and of future directions
for submitted projects.

Large databases of clinical data were managed using the structured query
language (sql) in the mysql and mssql (for interface with hospital system)
management system.

9.5 overall challenges

Several challenges have been encountered during this thesis. First and
furthermost, data preprocessing is a necessary step before any analysis. Often
underestimated, data preprocessing was one the most important and time-
consuming step in this thesis. It involved artefacts removal and identification of
missing, incorrect, or discrepancies within the data. It was necessary to acquire

https://gitlab.com/licm
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various medical knowledge on each of the studied topics, and it involved many
discussions with clinical and it experts.

Second, when designing prediction models, a right balance had to be found
between using a certain number of features to improve model performance
but prevent overfitting. This step was performed with feature selection, which
required an in-depth review of literature to identify predictors of interest in
the studied fields. To promote the applicability of the developed models, only
routinely collected data were used in the models. Afterwards, the optimal
learning algorithm had to be identified. The use of random forest in Chapter
3 was motivated by its ease of interpretation and robustness. In Chapters 5

and 6, simple logistic regression were used due to the limited sample size of
the study. Particular care was given towards findings generalizability using
interval validation techniques via bootstrapping, and external validation when
sample size was sufficient.

Finally, the translation of the developed analytics towards patient bedside
should not be underestimated. First, we had to identify the optimal translation
channel. An open-access website was designed for the AKIpredictor as the
models were sparse and based on routinely collected information. Although the
last model involved monitoring data and therefore, software implementation
within the Patient Data Management System (pdms) would be necessary to
allow its use. A software was designed for the visualization of secondary brain
injuries, as it requires processing of monitoring patient data. To promote clinical
use, we had to think about software usability, which will be improved using
usability test by end users in a near future. Attaining the required knowledge
for web and software design was a serious challenge.

9.6 general conclusion

In this thesis, we successfully applied big data analytics to gain novel
insights into critical care medicine, through an extensive collaboration between
clinical experts and engineers. First, we developed and validated machine-
learning-based prediction models, which outperformed one of the most
studied biomarkers, for early detection of acute kidney injury in critically ill
adults. We made these models accessible online via a web-application that is
currently used worldwide. To understand their clinical utility, the models were
prospectively compared to physicians. Not only did the models maintain their
original performance, but they also achieved an increased clinical benefit and
calibration compared to icu physicians. Second, we investigated novel indices
that highlight the potential benefit of a different application of near-infrared-
based cerebral oximetry, for prognostication of icu and hospital outcomes,
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and for the prediction of acute kidney injury, in critically ill children after
cardiac surgery. Finally, in patients with severe traumatic brain injury, we
showed that the dose of impaired cerebral autoregulation is associated with
adverse outcomes. To translate this concept to the bedside, we developed the
prototype of a monitor that visualizes dynamically patient-specific secondary
brain injuries in terms of intracranial pressure and cerebral autoregulation. This
prototype lays the ground for a potential adaptation of the management of
patients with severe traumatic brain injury. Overall, the findings obtained in the
three investigated domains of critical illness open up avenues for prospective
interventional clinical studies to assess whether the developed tools or the novel
insights can improve process of care and patient outcome.
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S U M M A RY

Critically ill patients are admitted to the intensive care unit (icu) with acute
life-threatening conditions. The diagnostic-therapeutic cycle in these patients is
short as their clinical situation may vary rapidly. It is therefore of great interest
to detect those patients most vulnerable to specific organ deterioration as early
as possible. Due to the massive quantities of data generated at the patient
bedside, clinicians are facing the problem of information overload. It is virtually
impossible to process all the data from the various sources at the same time
and over time. Big data analytics, a term that encompasses the application of
data-driven advanced analytics such as machine learning techniques, are able
to process large amount of data to perform pattern recognition, predictions, or
generate data-driven hypothesis.

In this thesis, we aimed to apply big data analytics to gain novel insights
in critical illness and to develop and validate decision support applications to
help clinicians in the management of critically ill patients. We focused on three
highly prevalent conditions, with important clinical consequences.

In the first part, we focused on early detection of acute kidney injury
(aki). aki affects approximately 40% of critically ill patients and is associated
with increased risks of morbidity and mortality, and with high financial
costs. Early diagnosis of aki is a major clinical challenge, which partially
explains why the search for aki therapies has been unsuccessful. Using the
large multicenter epanic database, we developed and validated machine-
learning-based prediction models (jointly referred to as AKIpredictor) for the
development of aki during the first week of icu stay. Four models were
developed to mimic the sequential availability of clinical data at the bedside.
All models were based on routinely collected patient information. The models’
performance was fair to good, and gradually improved with data availability.
Additionally, this study was the largest study of an aki biomarker, which,
when measured at icu admission, was outperformed by the AKIpredictor.
The models were made available online via an open-access web application
(www.akipredictor.com), which has been used worldwide by more than 2000

users.

To understand how these models should be used in clinical practice and how
they compare to bedside physicians, we conducted a prospective observational
blinded study in 252 critically ill adults. Using structured questionnaires,

www.akipredictor.com
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physicians were asked upon admission, on the first morning of icu stay,
and after 24 hours, to predict the development of aki. Predictions were
compared against those made by the AKIpredictor. Physicians predicted aki

with good discrimination but with an over-estimated risk. Although achieving
a slightly lower discrimination than physicians, the AKIpredictor showed
improved calibration and net benefit, suggesting an added value to physicians’
predictions, in particular for junior clinicians, when physicians were not
confident in their predictions, or when it is of interest to gather predictions
at fixed time points such as at inclusion in clinical trials.

In the second part, we focused on the assessment of the utility of
near-infrared-based cerebral oximetry. Cerebral oximetry by near-infrared
spectroscopy (nirs) is used frequently in critically ill children to measure
oxygen saturation levels in the frontal lobe. However, guidelines on how
it should be used to guide patient care, trigger interventions, or for
prognostication are lacking. Using the data from a prospective observational
study where children after cardiac surgery were monitored with a blinded
nirs cerebral oximeter, we assessed association between the nirs signal and
icu and hospital outcomes. Using advanced time-series analysis, we calculated
predictors on the first 24 hours of nirs monitoring, and found that both a
measure of variability and the dose of desaturation below 50% were significant
predictors of adverse outcomes. Furthermore, our study highlighted the
difference in the nirs signal between patients with cyanotic versus acyanotic
heart defect. Hence, we recommend that future studies should be adequately
powered to analyze these populations separately.

Cerebral nirs oximetry is also used as a hemodynamic monitor for early
recognition of an inadequate global oxygen supply/demand relationship in
critically ill children, as the use of invasive catheters is not feasible or available.
Hemodynamic instabilities contribute significantly to the development of
aki, a common complication after pediatric cardiac surgery. We investigated
the ability of cerebral nirs oximetry to predict severe aki after pediatric
cardiac surgery and assessed its additional predictive value to routinely
collected data. Overall, we found that the data currently displayed in cerebral
oximeters have only fair discriminability for 6-hour-ahead prediction of severe
aki. Retrospective calculation of nirs variability achieved better performance,
although not sufficient to outperform a clinical model based on routinely
collected patient information. However, combining nirs variability with the
clinical model significantly improved predictive capabilities, suggesting that
the nirs signal carries independent relevant information in addition to
routinely collected clinical data.



Summary 227

Future prospective interventional studies are required to identify whether the
implementation of nirs variability at the bedside could help drive therapeutic
interventions and improve patient outcome, or for prognostication.

In the last part of this thesis, we focused on the detection of secondary
brain injuries in patients with severe traumatic brain injury (tbi). tbi is one
of the most important health care problems worldwide. In the hours and days
following the initial traumatic insult (or primary injury), destructive and self-
propagating biological changes in the brain can lead to subsequent additional
damages (or secondary injury). Prevention and treatment of secondary injury is
the main goal of neuro-critical care in patients with tbi.

A subtype of secondary brain injuries is elevated intracranial pressure (icp),
which is associated with worse outcome. The combination of the duration and
the intensity of icp defines a dose, and the association between various icp

doses and outcomes can be visualized using large cohorts of patients with
severe tbi. Two distinct regions associated with good or poor neurological
outcomes emerged from the plot, and were affected by the cerebrovascular
pressure autoregulation (car) capability of the patient. car is the physiological
mechanism by which the brain is able to maintain a constant cerebral blood
flow during changes in cerebral perfusion pressure, and is often impaired in
patients with severe tbi.

We investigated whether doses of deficient car are associated with worse
clinical outcomes, and can be defined as a subtype of acute secondary brain
injury. We analyzed the association between 6-month neurological outcome
and the dose of car, in a large database of patients with severe tbi. The
resulting color-coded plots showed a time-intensity association with outcome
for car insults in adult and pediatric patients with severe tbi. For both
cohorts, two distinct regions associated with good or poor outcomes were
found, separated by an exponential transition curve. This indicates that car

is disturbed in a dynamic manner, such that duration and intensity play a role
in the determination of a zone associated with better neurological outcome.

Currently, international guidelines recommended icp lowering therapies at
a universal threshold of 22 mmHg and no recommendation exist regarding
management of car. The two population-based color-coded plots open up
avenues for novel ways of managing patients with severe tbi. Indeed, the
course of individual patients could be visualized both in terms of icp and car

in the population-based plots, and patient-specific thresholds can be inferred
from the plots to adapt therapy. Additionally, continuous monitoring of car is
challenging and usually based on indices reflecting the correlation between icp

and blood pressure captured at high frequency. As such, the Low Frequency
Autoregulation Index (lax) is a promising index developed by our research
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group, which has never been evaluated prospectively. Therefore, we developed
the prototype of a bedside monitor, to calculate and display the lax as a
measure of car, and to visualize patient-specific secondary brain injuries in
terms of icp and of car, in a continuous way. A prospective observational
blinded study to evaluate the correct functioning of the prototype in real-time
is currently being set up. Upon study completion, the software will be ready
to be tested in an interventional study. Such study will evaluate whether the
outcomes of patients with severe tbi can be improved by using the prototype
to guide patient management.

Overall, this thesis focused on the application of big data analytics in
different fields of intensive care medicine. Several applications have been
developed, ranging from prediction models, to advanced statistical analysis
of times-series of medical signals, and knowledge discovery. We generated
new knowledge from routinely collected data or from monitoring devices for
which the usefulness has not been proven. We successfully translated two
of these applications towards patient bedside, which open up avenues for
prospective interventional clinical studies to assess whether the developed tools
can improve process of care and patient outcome.
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