

AUTOPHAGY, FGF21 AND GLUCAGON DURING CRITICAL ILLNESS: INTERACTIONS AND THERAPEUTIC PERSPECTIVES

Steven Thiessen MD, PhD Department of Intensive Care, UZ Leuven Laboratory of Intensive Care, KU Leuven

Overview

- 1. Introduction
- 2. Objectives
- 3. Results
 - 1. The role of *autophagy* during critical illness
 - 2. The role of *FGF21* during critical illness
 - 3. The role of *glucagon* during critical illness
- 4. General conclusions and therapeutic perspectives

Introduction

1. Multiple organ failure (MOF)

Table 2 ICU and hospital mortality rates according to the number, type, and combinations of failed organs

	On admission to the ICU			At any time during ICU stay		
	Incidence (%)	Mortality (%)		Incidence (%)	Mortality (%)	
		ICU	Hospital		ICU	Hospital
Number of failed organs						
1	927 (32)	17	23	942 (32)	5	- 11
2	524 (18)	28	37	677 (23)	24	33
3	181 (6)	45	50	334 (11)	44	51
>3	43 (1)	58	70	157 (5)	73	79

The pathogenesis of MOF is incompletely understood

More insight is necessary to identify new *therapeutic perspectives*

KU LEU

Sakr et al. 2012 Crit Care, Thiessen et al. 2017 BBA-Mol Basis Dis

1. Cellular dysfunction in MOF

KU LEUVEN

Thiessen et al. 2017 BBA-Mol Basis Dis

1. Autophagy

KU LEUVEN

Thiessen et al. BBA-Mol Basis Dis 2017

1. Deranged metabolism during critical illness

Critical illness

Endocrine and metabolic disturbances

Biphasic neuroendocrine response

Hyperglycemia Muscle wasting Hypoaminoacidemia Increased lipolysis

KU LEUVEN

Photo courtesy of Prof. Dr. G. Meyfroidt

2. Objectives

To gain more insight in the metabolic mechanisms of organ failure during critical illness, in order to identify therapeutic perspectives

Focused on

- 1. The role of **autophagy** in safeguarding organ function
- 2. The role of **FGF21** during critical illness
- 3. The role of **glucagon** during critical illness

Part 1: The role of autophagy in safeguarding vital organ function during critical illness

Methods: Autophagy KO mice

Day 1: Sacrifice Day 3: Sacrifice

Healthy-WT

Healthy-KO

Crit III-KO

Crit III-WT

Healthy-KO

Healthy-WT

Conclusion

Part 2: The role of FGF21 during critical illness

JCEM 2015;100:E1319-E1327

Is FGF21 elevated during critical illness and does it relate to cellular stress?

FGF21

Critically ill patients

Healthy matched controls

Hyperglycemia

Normoglycemia

KU LEUVEN

Van den Berghe et al. 2001. NEJM; Vanhorebeek et al. 2005 Lancet.

KU LEUVEN

Critical illness

Survivors vs. non-survivors

Effect of targeting normoglycemia

Part 3:

The role of glucagon during critical illness

Am J Respir Crit Care Med 2017, in press

1. Is glucagon elevated during critical illness and affected by providing nutrition?

Mice <u>AA administration</u>

- 1. Is glucagon elevated during critical illness and affected by providing nutrition?
- 2. What is the metabolic role of glucagon during critical illness?

Brand et al. Diabetologia.1994; Sörensen et al. Diabetes. 2006.

Healthy Crit III Crit III-glucagon neutralized

Glucagon

KU LEUVEN

Healthy Crit III Crit III-glucagon neutralized

- 1. Is glucagon elevated during critical illness and affected by providing nutrition?
- 2. What is the metabolic role of glucagon during critical illness?
- 3. Does glucagon stimulate hepatic autophagy during critical illness?

Critical illness

Glucagon

General conclusions and therapeutic perspectives

Therapeutic perspectives

- Autophagy activators as a potentially useful therapy for critically ill patients.
- FGF21 as a promising autophagy activator and cellular stress-reducing agent during critical illness.
- **Glucagon modulation** as a potential therapy for attenuating amino acid catabolism during critical illness.

Acknowledgements

External collaborators

Isabel Pintelon (Univ. Antwerp) Wim Martinet (Univ. Antwerp) Nele Peersman (KULeuven) Pieter Vermeersch (KULeuven) Jens J. Holst (Univ. Copenhagen) David Mangelsdorf (Univ.Texas)

Prof. Greet Van den Berghe Prof. Ilse Vanhorebeek

Laboratory and Clinical Division of Intensive Care Medicine University Hospitals Leuven.

Thank you for this award and for your attention!

